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Abstract. The transparent formulation of explanation methods is es-
sential for elucidating the predictions of neural networks, which are typ-
ically black-box models. Layer-wise Relevance Propagation (LRP) is a
well-established method that transparently traces the flow of a model’s
prediction backward through its architecture by backpropagating rele-
vance scores. However, the conventional LRP does not fully consider the
existence of skip connections, and thus its application to the widely used
ResNet architecture has not been thoroughly explored. In this study,
we extend LRP to ResNet models by introducing Relevance Splitting at
points where the output from a skip connection converges with that from
a residual block. Our formulation guarantees the conservation property
throughout the process, thereby preserving the integrity of the gener-
ated explanations. To evaluate the effectiveness of our approach, we con-
duct experiments on ImageNet and the Caltech-UCSD Birds-200-2011
dataset. Our method achieves superior performance to that of baseline
methods on standard evaluation metrics such as the Insertion-Deletion
score while maintaining its conservation property. We will release our
code for further research at https://5ei74r0.github.io/lrp-for-
resnet.page/

1 Introduction

The widespread adoption of neural networks underscores the critical importance
of explainability of these models [31, 36]. Indeed, the European Parliament’s
AI Act, promulgated in December 2023, proclaims that AI systems must be safe
and transparent [18]. This strengthens the need to develop the methods to gener-
ate appropriate and meaningful explanations of neural network models. Current
methods often lack transparency, making the interpretation of the results a non-
trivial task [19]. Additionally, the black-box nature of neural network models
sometimes masks the underlying logic of their inference processes. This opacity
presents significant challenges in verifying the validity of the models’ predictions.
To address this issue, Explainable AI has been proposed as a means of making
the models more transparent and thus promoting the application of AI in critical
domains [32].
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Fig. 1: We propose LRP for ResNet. By formulating Relevance Splitting at a point
where the output from a skip connection converges with that from a residual block,
we extend LRP—originally designed for propagating relevance between two consecu-
tive layers—to the ResNet architecture while guaranteeing its conservation property,
thereby preserving the integrity of the explanation process.

The generation of visual explanations within neural networks poses a signifi-
cant challenge, necessitating the precise extraction of critical areas. For example,
the current Layer-wise Relevance Propagation (LRP) [3] implementation en-
counters notable challenges when applied to ResNet [10] architectures. ResNet’s
residual connections create multiple non linear relevance pathways, which cannot
be handled by the typical relevance attribution process of LRP. Consequently,
the explanations generated by LRP for ResNet models often give unreliable re-
sults as shown in Sec. 5.2. Therefore, while LRP offers a valuable framework for
relevance attribution in neural networks, its limitations, particularly in handling
architectures like ResNet, pose a challenge. This underscores the pressing need
for advanced methodologies in this domain.

In explaining inference processes of black-box models, it is crucial that the
explanation method is transparently formulated. Although several explanation
methods applicable to ResNet, such as Grad-CAM [34], RISE [26], and LIME [31],
offer valuable insights, they often lack transparency. For instance, Grad-CAM
relies on the output of the last convolutional layer for its explanation, which
may obscure the contributions of earlier model structures. Although Grad-CAM
effectively highlights relevant areas in the input image for the model’s inference,
it falls short in elucidating how the earlier layers and their interconnections in-
fluence these findings. This limitation prevents a comprehensive understanding
of the model’s internal inference mechanisms.
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By contrast, LRP [3] is a transparent explanation method that traces the
flow of a model’s prediction back through its architecture by backpropagating
relevance scores. A key aspect of LRP is its conservation property, which ensures
that the total relevance score received by an unit is equal to the total it redis-
tributes. However, the application of LRP to CNN models has been limited.
Although it has been applied to traditional models such as VGG [37], LRP’s
application to the widely used [6, 15, 28–30, 45, 46] ResNet architecture has not
been sufficiently discussed.

In this study, we extend LRP to models with residual connections, such as
ResNet, by formulating a novel relevance propagation rule that maintains the
conservation property. This adaptation allows high-quality, transparent expla-
nations to be generated for ResNet models, thereby contributing to a deeper
understanding and improved interpretability of complex neural networks. A com-
prehensive summary of our method is shown in Fig. 1.

Our method is potentially applicable to other models featuring residual con-
nections. Previous studies [1,2] have applied LRP to models such as LSTM [11]
and transformers [42]. However, these adaptations have not addressed relevance
propagation in the presence of residual connections. Specifically, the application
of LRP to transformers has ignored the existence of residual connections in its
relevance propagation [1]. Our key contributions are as follows:

• We extend LRP to models with residual connections by introducing Rele-
vance Splitting at points where the output from a skip connection converges
with that from a residual block.

• The conservation property is guaranteed throughout the proposed process,
thereby preserving the integrity of the relevance propagation mechanism.

• To mitigate the issue of overconcentration of generated attributions within
irrelevant regions, we introduce Heat Quantization.

• Our method demonstrate superior performance to that of baseline methods
on standard evaluation metrics, including the Insertion-Deletion score.

• We investigate improved designs for relevance propagation within residual
blocks and skip connections through an ablation study and demonstrate the
significance of propagating relevance through skip connections and employ-
ing Ratio-Based Relevance Splitting.

2 Related Work

There has been widespread research on generating visual explanations for neural
network models [3–5, 9, 14, 23, 34, 44]. General post-hoc explanation methods
are primarily categorized into three types based on the method whereby they
generate explanations: perturbation, backpropagation, and approximation.

Perturbation methods. Perturbation methods such as RISE [26], extremal
perturbations [8], and SHAP [17] generate explanations by deliberately modi-
fying the input images. These methods are effective, but often entail multiple
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interactions with black-box models, resulting in time-consuming processes that
pose a significant drawback for practical applications.

Backpropagation methods. Backpropagation methods [3, 34–36, 38, 40, 41]
leverage the backpropagation algorithm to produce gradient or gradient-related
explanations. Integrated Gradient [41] utilizes the gradient theorem to allocate
attributions to input features. Grad-CAM [34] calculates explanations by sum-
ming CNN activations across channels, with weights derived from the average
of the corresponding gradients. Rule-based backpropagation methods such as
DeepLift [36] and Layer-wise Relevance Propagation (LRP) [3], which propa-
gate scores using distinct methodologies. LRP is a well-established method that
guarantees the conservation property; however, its proper application for ResNet
is currently limited. Although the original LRP is applicable to simple skip con-
nections with identity weights, we cannot directly apply the original LRP to skip
connections with upscaling or downscaling mappings.

In this study, we integrates LRP into the ResNet architecture. This integra-
tion marks a significant advance over the traditional application of LRP, which
lacks support for models with residual connections.

Approximation methods. Approximation methods [25, 31] employ an exter-
nal entity to elucidate inference processes of black-box models. These meth-
ods create understandable approximations or explanations of how the black-box
model works, usually focusing on specific predictions or decisions. However, their
separation from the black-box models can pose challenges in accurately captur-
ing the models’ intricate working.

Incorporating modules for explanation. Another body of research [9, 12,
13,22] has investigated the direct incorporation of modules designed for generat-
ing explanations into the model architecture. For example, the Attention Branch
Network [9] enhances image recognition performance by simultaneously generat-
ing explanations. However, the integration of such explanation-centric modules
adds a layer of complexity, potentially reducing the model’s overall transparency.

Datasets. In the pursuit of generating visual explanations for image classifi-
cation tasks, standard datasets such as ImageNet [7], CIFAR-10 and CIFAR-
100 [16] are commonly employed. In addition to these general datasets, domain-
specific datasets such as Caltech-UCSD Birds-200-2011 [43] and the Indian Di-
abetic Retinopathy Image Dataset (IDRiD) [27] are often used. CUB features
annotated bird images from 200 species, along with 15 part attributes per species.
IDRiD contains fundus images with annotations of varying severity levels of fun-
dus hemorrhage as evaluated by medical professionals.
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Fig. 2: LRP for ResNet. Top: LRP propagates the relevance score backward to gen-
erate an attribution map corresponding to the input image. We focus on the relevance
score propagation through the Bottleneck module, which incorporates a residual con-
nection. Bottom: Architecture of the Bottleneck module. The D-Bottleneck employs
a linear projection, in its skip connection for dimension matching. ReLU activation
functions and batch normalization layers are omitted for simplicity.

3 Background: Layer-wise Relevance Propagation

In the following sections, we first briefly review Layer-wise Relevance Propa-
gation (LRP) [3] before discussing how it should be extended to ResNet and
introducing several relevance propagation rules.

LRP is an explanation method that propagates a model’s prediction back
through the network via relevance scores. Its key feature is the propagation
property, ensuring that the sum of relevance scores received by an unit equals
the sum redistributed by the same unit.

3.1 LRP Between Two Consecutive Layers

Consider h(l) ∈ RD and h(l+1) ∈ RE as the intermediate features in the l-th and
(l + 1)-th consecutive layers, respectively. Let fθ be the function parametrized
by θ which maps h(l) to h(l+1), and define R(l) and zij as the relevance scores
of h(l) and the contribution from h

(l)
i to h

(l+1)
j , respectively.

The relevance scores propagating through fθ from all h(l+1)
j to h

(l)
i can then

be expressed as:

R
(l)
i =

E∑
j=1

zij∑D
k=1 zkj

R
(l+1)
j , (1)

where R
(l+1)
j and R

(l)
i denote the relevance scores of the j-th element of h(l+1)

and the i-th element of h(l), respectively. Here, the quantity zij can be formulated
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in various ways. The denominator
∑D

k=1 zkj ensures the conservation of the total
relevance score between two consecutive layers.

In this study, we employ the z+-Rule [21] for the relevance propagation where
we can view fθ as a linear projection. The relevance propagation through linear
projection f in the z+-Rule can be written as:

R
(l)
i =

E∑
j=1

w+
jih

(l)
i∑D

k=1 w
+
jkh

(l)
k

R
(l+1)
j , (2)

where f(h(l)) = Wh(l), w+
ji = max(0, wji), and wji denotes the (j, i)-th element

of W ∈ RE×D. In this context, W+ is defined as the matrix consisting of the
non-negative elements of W , that is, W+

ij = max(0,Wij) for all i and j. This
allows us to reformulate the equation as:

R
(l)
i =

E∑
j=1

∂f+
j

∂h
(l)
i

(h(l))h
(l)
i

f+
j (h(l))

R
(l+1)
j , (3)

where f+(h(l)) = W+h(l).
We apply this rule to convolution, global average pooling (GAP), max pool-

ing, and fully-connected layers, as these operations can be formulated as linear
projections with specific weight matrices. For ReLU activation functions and
batch normalization (BN) layers, the relevance scores are passed through with-
out any modifications.

4 Method

By introducing a novel relevance propagation rule for models with residual con-
nections, we extend Layer-wise Relevance Propagation (LRP) [3] to be applica-
ble in such models, specifically developing an LRP for ResNet [10] models. This
extension defines the calculation method of LRP for models with residual con-
nections. Consequently, our approach is widely applicable to models possessing
residual blocks. Fig. 2 provides an overview of the ResNet architecture and the
associated application of LRP.

4.1 General Formulation

In this study, we focus on the task of visualizing important regions in an image as
a visual explanation of the model’s prediction. In this task, the visual explanation
should focus on the pixels that contributed to the model’s decision. Fig. 3 shows
a typical sample of the task. The left and right panels show the input image and
the visual explanation, respectively. The input is an image x ∈ Rc(0)×h(0)×w(0)

,
where c(0), h(0), and w(0) denote the number of channels, height and width of
the input image, respectively. The output p(ŷ) ∈ [0, 1]C denotes the predicted
probability for each class, where C is the number of classes. Additionally, the
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“Water ouzel” Relevant attribution

Fig. 3: Left: Typical sample of an input image from ImageNet [7]. Right: the corre-
sponding attribution as a visual explanation.

importance of each pixel is obtained as an attribution α ∈ Rh(0)×w(0)

which is
used as a visual explanation. To quantitatively evaluate our method, we use the
Insertion, Deletion, and Insertion-Deletion scores [26]. In this study, we assume
that the model is based on a ResNet architecture.

4.2 Architecture of ResNet50

Before discussing the extension of LRP to ResNet models, we briefly review the
architecture of ResNet, with a focus on ResNet50. ResNet50 consists of a con-
volution layer, a BN layer, a max pooling layer, 16 Bottleneck modules, a GAP
layer, and a fully-connected layer followed by a softmax function. Each Bottle-
neck module consists of a skip connection and a residual block. The residual
block is structured with three convolution layers: a 1 × 1 convolution for dimen-
sion reduction, a 3 × 3 convolution for processing, and another 1 × 1 convolution
to restore or increase the dimension. These layers are sequentially followed by
BN and ReLU activation functions.

We treat two types of Bottleneck modules: the Simple Bottleneck (S-Bottlene-
ck) module and the Downsampling Bottleneck (D-Bottleneck) module. The S-
Bottleneck module uses an identity mapping in its skip connection. In contrast,
the D-Bottleneck module employs a linear projection in its skip connection for
dimension matching. In this study, we mainly focus on how relevance should be
propagated through these Bottleneck modules.

4.3 LRP for Bottleneck Modules

In this section, we discuss and formulate several potential relevance propagation
rules for Bottleneck modules. As seen in Eq. (1), LRP originally defines a propa-
gation rule between two consecutive layers. However, this rule does not account
for the existence of a skip connection that bridges nonconsecutive layers. This
raises a fundamental question: how should we propagate the relevance scores at
the point where the output of the skip connection converges with that of the
residual block?
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Fig. 4: Architecture of the Bottleneck block in ResNet and our Relevance Splitting ap-
proach. We introduce Relevance Splitting to consider the existence of skip connections
in the relevance propagation of LRP.

As a preliminary step, we first divide the relevance score R(l+1) into two
parts: Rs for propagation through the skip connection and Rm for the main-
stream of the residual block. In this context, s in Rs signifies the skip connection,
and m in Rm denotes the mainstream of the residual block. To adhere to the
conservation property, we impose the constraint: R(l) = R(l+1) = Rs +Rm.

We formulate two approaches for dividing Rs and Rm: Symmetric Splitting
and Ratio-Based Splitting, as illustrated in Fig. 4. Symmetric Splitting divides
R(l+1) equally as follows:

(Rs)i = (Rm)i =
R

(l+1)
i

2
. (4)

This method is straightforward, but does not account for the varying contribu-
tions of individual elements in the intermediate feature h(l+1), which could lead
to a less-nuanced propagation of relevance.

Ratio-Based Splitting is a more thorough approach. Let hs and hm represent
the outputs of the skip connection and the residual block, respectively. We divide
R(l+1) to satisfy the following conditions:

(Rs)i =
R

(l+1)
i · |(hs)i|

|(hm)i|+ |(hs)i|
, (Rm)i =

R
(l+1)
i · |(hm)i|

|(hm)i|+ |(hs)i|
. (5)

This approach accounts for the ratio of the absolute values of hs and hm. When
the skip connection is an identity mapping, hs = h(l), and hm is equivalent
to h(l+1) − h(l), representing the change in features attributable to the model’s
parameters. In such cases, the greater the absolute value of an element in hm,
the more significant the model’s contribution to that element. This approach
naturally satisfies the conservation property:

(Rs)i + (Rm)i =
R

(l+1)
i · |(hs)i|

|(hm)i|+ |(hs)i|
+

R
(l+1)
i · |(hm)i|

|(hm)i|+ |(hs)i|
(6)

=
R

(l+1)
i · (|(hm)i|+ |(hs)i|)

|(hm)i|+ |(hs)i|
= R

(l+1)
i . (7)
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4.4 LRP for Two Types of Skip Connections

As mentioned in Sec. 4.2, there are two types of Bottleneck modules, each with
a distinct type of skip connection. Specifically, the S-Bottleneck module features
an identity mapping in its skip connection, whereas the D-Bottleneck module
uses a linear projection.

This distinction leads to another question: should the two types of skip con-
nections, i.e., identity mapping and linear projection, be treated equally? It
appears logical to propagate relevance scores through linear projections in skip
connections, as they transform the input through multiplication with their pa-
rameter matrices. These operations in the D-Bottleneck modules, although pri-
marily intended to downsample the input to match the output dimension, can
selectively emphasize important input elements through a linear projection. In
contrast, a skip connection with an identity mapping does not perform any trans-
formation. This suggests that there might be room to apply different relevance
propagation approaches for the two types of skip connections. One approach
entails setting Rs = 0 for skip connections with identity mappings, thereby
propagating all relevance through the residual block. The other approach in-
volves applying the Relevance Splitting method discussed in Sec. 4.3, even to
skip connections with identity mappings.

Based on the results of preliminary experiments, our proposed explanation
method employs Ratio-Based Splitting and applies it to all skip connections,
including those with identity mappings. To evaluate the effectiveness of this
strategy, we conduct ablation studies comparing these conditions (see Sec. 5.4).

By sequentially applying the described propagation rules and backpropagat-
ing the relevance scores, we can compute the relevance score R(0) for the input
x. Similar to existing LRP methods, R(0) has the same shape as x, and its
channel-wise sum, denoted as αR, can be directly used as an attribution map.
However, αR tends to excessively concentrate on irrelevant regions. To mitigate
this tendency, we quantize the values in αR to obtain a more even distribution of
attribution, resulting in the final attribution map α. We refer to this operation
as Heat Quantization, formulated as follows:

αi,j = (αR)min +

⌊
(αR)i,j − (αR)min

((αR)max − (αR)min) / Q

⌋
Q, (8)

where Q denotes the number of quantization bins. We set Q = 8.

5 Experiments and Results

5.1 Experimental Setup

We used the Caltech-UCSD Birds-200-2011 (CUB) dataset [43] and the valida-
tion set of ImageNet [7] (ILSVRC) 2012 to evaluate our method. These datasets
were chosen because they are standard datasets for visual explanation generation
tasks. The CUB dataset contains 11,788 images from 200 classes of bird species.
The validation set of ImageNet consists of 50,000 images from 1,000 classes.
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(a) (b) (c) (d) (e) (f) (g)
Original LRP [3] IG [41] Guided BP

[39]
Grad-CAM

[34]
Score-CAM

[44]
Ours

Fig. 5: Qualitative Results: Attribution produced by each explanation method for
the prediction of ResNet50 with respect to the ground-truth classes (top to bot-
tom): “Brandt Cormorant,” “Savannah Sparrow,” “Sock,” “Bustard,” and “Bee.” IG and
Guided BP denote Integrated Gradients and Guided BackPropagation, respectively.

For the experiments on the CUB dataset and ImageNet, we employed ResNet-
50 [10] that was trained on the CUB dataset and pretrained on ImageNet. De-
tailed information about the training setup, data preprocessing, and hardware
specifications can be found in the supplementary material.

5.2 Qualitative Analysis

Fig. 5 presents the qualitative results. Column (a) displays the original images.
Columns (b)–(f) depict the attribution maps generated by the baseline methods,
overlaid on the original images. Column (g) represents the results generated by
the proposed method. Columns (b), (c), and (d) show the explanations gener-
ated by Layer-wise Relevance Propagation (LRP) [3], Integrated Gradients [41],
and Guided BackPropagation [39], respectively. Attribution maps generated by
these explanation methods were often noisy or did not sufficiently highlight rel-
evant regions, as demonstrated by the qualitative results. Columns (e) and (f)
show the explanations generated by Grad-CAM [34] and Score-CAM [44], respec-
tively. Both of their results have attention regions that encompass the whole of
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Table 1: Quantitative results on ImageNet and the CUB dataset. IG and Guided BP
denote Integrated Gradients and Guided BackPropagation, respectively. Ins. and Del.
denote Insertion and Deletion score, respectively. The best results are marked in bold.

Dataset CUB [43] ImageNet [7]
Metric [%] Ins. (↑) Del. (↓) ID score (↑) Ins. (↑) Del. (↓) ID score (↑)
Method
LRP [3] 5.8± 0.2 4.7± 0.1 1.1± 0.0 9.5 8.3 1.1
IG [41] 2.0± 0.1 1.5± 0.1 0.6± 0.0 5.2 6.2 -1.1
Guided BP [39] 4.2± 0.2 1.4± 0.1 2.8± 0.2 11.5 5.7 5.7
Grad-CAM [34] 50.8± 1.5 5.5± 0.4 45.3± 1.1 49.7 12.6 37.1
Score-CAM [44] 51.1± 1.7 5.4± 0.4 45.7± 1.4 48.8 13.3 35.5
Ours 59.5 ± 1.0 1.4 ± 0.0 58.2 ± 1.0 56.3 1.8 54.5

the relevant objects, but also focus on the background surrounding them. In con-
trast, the attribution maps generated by the proposed method specifically target
the relevant objects with detailed focus and demonstrate minimal attention to
background regions, thus yielding more appropriate explanations.

5.3 Quantitative Comparison Against Baselines

Table 1 presents the quantitative results of a comparison between several baseline
methods and the proposed method. For the experiments on the CUB dataset,
we conducted five experiments using each method and computed the mean and
standard deviation as the final results. For the experiments on the ImageNet,
we conducted a single experimental run with a pretrained model. The following
methods were selected as baselines: LRP, Integrated Gradients, Guided Back-
Propagation, Grad-CAM, and Score-CAM. We selected these methods (except
LRP) because they are standard methods that have been successfully applied to
models with skip connections.

To quantitatively evaluate our method, we employed the Insertion, Deletion,
and Insertion-Deletion (ID) scores [24, 26, 33]. These are standard evaluation
metrics for explanation generation tasks, and we consider the ID score as the
primary evaluation metric. The Insertion and Deletion scores were calculated as
the area under the Insertion and Deletion curves, respectively. The ID score is
defined as the difference between the Insertion and Deletion scores. Please find
details of these metrics in the supplementary material. For empirical evaluation,
we randomly selected 1,000 samples from the target dataset, ensuring equal
representation from each class.

As listed in Table 1, our method achieved an ID score of 0.582 in the ex-
periments on the CUB dataset. The corresponding ID scores of LRP, Integrated
Gradients, Guided BackPropagation, Grad-CAM, and Score-CAM are 0.011,
0.006, 0.028, 0.453 and 0.457, respectively. The proposed method outperformed
the best baseline method, Score-CAM, by 0.125 in terms of the ID score and
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Table 2: Comparison of propagation rules for the Bottleneck modules. “Include Iden-
tical” denotes the condition in which the relevance score for skip connections with
identity mapping is not set to 0. Insertion, Deletion and ID scores were calculated on
ImageNet. The highest scores are marked in bold.

Method Include
identical

Relevance
splitting Insertion (↑) Deletion (↓) ID Score (↑)

(i) Symmetric 0.543 0.033 0.510
(ii) ✓ Symmetric 0.553 0.036 0.517
(iii) Ratio-Based 0.543 0.033 0.510
(iv) ✓ Ratio-Based 0.563 0.018 0.545

Original Method (i) Method (iv)

Fig. 6: Qualitative results from the ablation study of propagation rules for the Bottle-
neck modules. Methods (i) and (iv) refer to the methods described in Table 2. Method
(iv) exhibits a more concentrated attribution towards relevant objects than Method (i).

achieved the best performance in terms of both the Insertion and Deletion
scores. Furthermore, as listed in Table 1, in the ImageNet experiments, our
method outperformed all the baselines on the ID score. Specifically, it exceeded
the highest-scoring baseline method, Grad-CAM, by 0.174 on the ID score, and
again achieved the best performances in terms of both the Insertion and Deletion
scores.

5.4 Ablation Study of Relevance Propagation Rules for Bottleneck
Modules

As discussed in Secs. 4.3 and 4.4, we formulated several types of relevance prop-
agation rules for Bottleneck modules. This section describes the results of an
ablation study focusing on the key design elements within these rules. Table 2
presents the quantitative results of this ablation study.
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Table 3: Quantitative results of the ablation study of Heat Quantization (HQ). These
experimental runs were conducted on ImageNet. The best results are highlighted in bold.

Method Insertion (↑) Deletion (↓) ID Score (↑)
(i) w/o HQ 0.442 0.066 0.376
(ii) w/ HQ 0.543 0.033 0.510

The ID score under Method (iv) is 0.545, which surpasses the score under
Method (iii) by 0.035. This indicates the effectiveness of allocating relevance to
the skip connections with identity mappings. Furthermore, the ID score under
Method (iv) exceeds that of Method (ii) by 0.028. This suggests that adopt-
ing Ratio-Based Splitting, which considers the element-wise proportion of the
output of a skip connection and a residual connection, results in higher-quality
attribution maps than those generated by Symmetric Splitting.

The performance drop from Method (iv) to Method (iii) is greater than that
from Method (iv) to Method (ii). This indicates that allocating relevance to
skip connections with identity mappings makes a greater contribution to the
enhancement in the quality of the attribution maps.

When examining Method (iv), there is a notable reduction in the Deletion
score compared with Methods (i)–(iii). This implies that Ratio-Based Splitting
while also propagating relevance to skip connections with identity mappings
prevents the attribution from dispersing to non-relevant objects such as the
background. Indeed, as shown in Fig. 6, when these two key design elements are
used simultaneously, there is a visible reduction in the dispersion of attribution
to non-relevant backgrounds compared with when neither element is used.

Furthermore, we conducted an ablation study to evaluate the Heat Quanti-
zation technique. Table 3 presents the quantitative results of it. The ID score
under Method (ii) is 0.510, surpassing that of Method (i) by 0.134. This indi-
cates that Heat Quantization successfully improves the quality of the generated
attribution maps.

5.5 Empirical Analysis of Conservation Property

For an explanation method to be considered valid, the sum of the contributions
from all inputs must equal the model’s output, thereby ensuring that the en-
tirety of the prediction’s attribution is accounted for. The conservation property
establishes this condition and is therefore very important in providing a rigorous
foundation for the interpretability of complex models [1,3,36,41]. In this section,
we show that our implementation strictly guarantees the conservation property.

We conducted an empirical analysis using 100 samples extracted from Im-
ageNet to rigorously assess the conservation property of our method. For each
sample, we visualized the sum of the relevance scores backpropagated to three
checkpoints: (a) the input, (b) the input of the first Bottleneck block, and (c) the
input of the last Bottleneck block. Fig. 7 plots these sums against the model’s
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(a) (b) (c)

Fig. 7: Visualization of the sum of relevance scores backpropagated to three critical
checkpoints within ResNet50: (a) input of the entire network, (b) input of the first Bot-
tleneck block, and (c) input of the last Bottleneck block. In each panel, the horizontal
axis and the vertical axis represent the sum of relevance score at the corresponding
checkpoint and model’s output predictions, respectively.

output predictions. The plotted points are precisely aligned with p(ŷc) =
∑

i R
(l)
i ,

where p(ŷc) represents the model’s predicted probability for class c and
∑

i R
(l)
i

represents the accumulated relevance scores at each layer l. This precise align-
ment across all sampled points at all checkpoints demonstrates that our explana-
tion method rigorously adheres to the conservation property. The uniformity of
these results demonstrates our method’s integrity of the relevance propagation.

6 Conclusion

We focused on the task of visualizing important regions in an image as a vi-
sual explanation of the model’s decisions. We extended Layer-wise Relevance
Propagation (LRP) [3] to models with residual connections such as ResNet [10]
by introducing Relevance Splitting at points where the output from a skip con-
nection converges with that from a residual block. Moreover, the conservation
property is guaranteed throughout the proposed process, thereby preserving the
integrity of the relevance propagation mechanism. Additionally, we introduced
the Heat Quantization to mitigate the issue of overconcentration of generated
attributions within irrelevant regions. Our method demonstrated superior per-
formance to that of baseline methods on standard evaluation metrics, including
the ID score. Furthermore, we investigated improved designs for relevance prop-
agation within residual blocks and skip connections through an ablation study
on relevance propagation within the Bottleneck module and demonstrated the
significance of propagating relevance through skip connections and employing
Ratio-Based Relevance Splitting.

Limitations and Future Directions. Although our experiments were con-
ducted on ResNet, our method has the potential to be applied to various models
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with residual connections. Consequently, further experiments could be under-
taken on other models, such as transformers [42]. Additionally, our method could
potentially be adapted for use in different modalities, such as natural language
processing, by applying it to models specific to these modalities. We leave these
further extensions for future study.
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Table A: Experimental setup for the experiment on the CUB dataset.

Optimizer SGD w/ momentum 0.9
Learning rate 1.0× 10−3

Weight decay 1.0× 10−4

#Epoch 300
Batch size 32
Image size 224

A Additional Details of Experimental Setup

Datasets. We used the Caltech-UCSD Birds-200-2011 (CUB) dataset [43] and
the validation set of ImageNet [7] (ILSVRC) 2012 to evaluate our method. These
datasets were chosen because they are standard datasets for visual explanation
generation tasks. The CUB dataset contains 11,788 images from 200 classes of
bird species. The validation set of ImageNet consists of 50,000 images from 1,000
classes.

Models. For the experiments on the CUB dataset, we employed ResNet50 [10]
trained on it. To train the model, we divided the CUB dataset into training,
validation, and test sets comprising 5,394, 600, and 5,794 samples, respectively.
The official split of the CUB dataset provides only the training and test sets.
Therefore, we used the official split for the test set and partitioned the official
training set into our training and validation sets. We used the training set to
train the model and the validation set to tune the hyperparameters. We evaluated
the model on the test set. As part of the preprocessing stage, the input images
were resized to a uniform dimension of 224 × 224 pixels. Moreover, during the
training process, we applied flipping and cropping to the input images as data
augmentation techniques. We used a ResNet50 model pretrained on ImageNet,
which is publicly available.

Table A summarizes the experimental setups. We applied a learning rate
decay such that the learning rate decreases by a factor of 10 every 30 epochs. We
employ the cross-entropy loss as our loss function during the training of ResNet
models. In our experiments on the CUB dataset, We stopped the training when
the loss on the validation set did not improve for six consecutive epochs. We
trained the models on a GeForce RTX 3080 with 16GB of memory and an Intel
Core i9-11980HK with 64GB of memory. It took approximately 1 h to train a
ResNet50 model on the CUB dataset. The inference time for a single sample
using ResNet50 was approximately 4.66 ms. Our implementation required 40.7
ms to calculate the forward path and generate the attribution for each sample.
Theoretically, the proposed explanation method has the same computational
cost as backpropagation.



Layer-Wise Relevance Propagation with Conservation Property for ResNet 19

Table B: Full quantitative results on ImageNet and the CUB dataset. IG and Guided
BP denote Integrated Gradients and Guided BackPropagation, respectively. Ins. and
Del. denote Insertion and Deletion score, respectively. The best results are marked in
bold.

Dataset CUB [43] ImageNet [7]
Metric [%] Ins. (↑) Del. (↓) ID score (↑) Ins. (↑) Del. (↓) ID score (↑)
Method
LRP [3] 5.8± 0.2 4.7± 0.1 1.1± 0.0 9.5 8.3 1.1
IG [41] 2.0± 0.1 1.5± 0.1 0.6± 0.0 5.2 6.2 -1.1
Guided BP [39] 4.2± 0.2 1.4± 0.1 2.8± 0.2 11.5 5.7 5.7
DeepLIFT [36] 2.4± 0.2 1.8± 0.1 0.6± 0.1 5.6 6.3 -0.7
Grad-CAM [34] 50.8± 1.5 5.5± 0.4 45.3± 1.1 49.7 12.6 37.1
Score-CAM [44] 51.1± 1.7 5.4± 0.4 45.7± 1.4 48.8 13.3 35.5
Ours 59.5 ± 1.0 1.4 ± 0.0 58.2 ± 1.0 56.3 1.8 54.5

Evaluation metrics. To quantitatively evaluate our method, we used the In-
sertion, Deletion, and Insertion-Deletion (ID) scores [26]. The Insertion and
Deletion curves represent the changes in prediction when important regions
based on the final attribution α are inserted or deleted, respectively. The de-
tails are as follows. First, the elements of α are sorted in descending order as
αi1j1 , αi2j2 , . . . , αiN jN where N denotes the total number of pixels. The sets An,
in, dn are defined as:

An = {(ik, jk) | k ≤ n}, (9)

(in,dn) =

{
(xij , 0) if (i, j) ∈ An,

(0, xij) if (i, j) /∈ An.
(10)

Here, n represents the number of pixels to insert or delete. Given inputs in
and dn, the model outputs y(ins,n) and y(del,n), respectively. The Insertion and
Deletion curves are defined as the curves plotted for n against the c-th elements
of y(ins,n) and y(del,n), respectively, where c represents the class to which x
belongs.

B Full Quantitative Results

Table B presents the full quantitative comparison between the proposed method
and the several baseline methods: Layer-wise Relevance Propagation (LRP) [3],
Integrated Gradients [41], Guided BackPropagation [39], DeepLIFT [36], Grad-
CAM [34], and Score-CAM [44].

As listed in Table B, our method achieved an ID score of 0.582 in the ex-
periments on the CUB dataset. The corresponding ID scores of LRP, Integrated
Gradients, Guided BackPropagation, DeepLIFT, Grad-CAM, and Score-CAM
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W/o Heat Quantization W/ Heat Quantization

Fig.A: The attribution map with respect to the ground-truth class: “Ping Pong Ball”
without (left) and with (right) Heat Quantization.

are 0.011, 0.006, 0.028, 0.006, 0.453 and 0.457, respectively. The proposed method
outperformed the best baseline method, Score-CAM, by 0.125 in terms of the
ID score and achieved the best performance in terms of both the Insertion and
Deletion scores.

Furthermore, as listed in Table B, in the ImageNet experiments, our method
outperformed all the baselines on the ID score. Specifically, it exceeded the
highest-scoring baseline method, Grad-CAM, by 0.174 on the ID score, and
again achieved the best performances in terms of both the Insertion and Dele-
tion scores.

C Qualitative Analysis of Heat Quantization

Fig. A shows the qualitative result of Heat Quantization. As shown in Fig. A,
Heat Quantization removes the excessive attribution allocated to the irrelevant
regions around the ping pong ball, such as the arm and the racket, while keeping
the meaningful features.

D Further Discussions

D.1 Discussion on splitting approaches based on qualitative
comparison

We investigated the two types of splitting approaches—Symmetric Splitting and
Ratio-Based Splitting—and their performance. Through the preliminary exper-
iments and ablation study, Ratio-Based Splitting outperforms Symmetric Split-
ting in ID score. In this section, we briefly conduct a qualitative comparison
between these two approaches.

As shown in Fig. B, we have observed that Symmetric Splitting results in
dispersed attribution. In contrast, such dispersion does not occur with Ratio-
Based Splitting. This difference matches the results of quantitative comparison.
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Symmetric Splitting Ratio-based Splitting

Fig. B: The attribution map with respect to the ground-truth class: “Beacon” with
Symmetric Splitting (left) and Ratio-based Splitting (right).

Method (i) Method (ii)

Fig. C: The attribution map with respect to the ground-truth class: “African Elephant”
generated by Method (i) (left) and Method (ii) (right).

However, simultaneously, we have observed that Ratio-Based Splitting produced
the grid patterns in the attribution map, though it can reduce the dispersion
of attribution to non-relevant backgrounds. We leave the theoretical validation
of the relationship between the formula of both approaches and these resulting
attributions for future study.

D.2 Small performance downgrade on the deletion task from
Method (i) to (ii) in Table 2

In table 2, while Method (ii) outperforms Method (i) in the primary metric
(IDscore), there is a performance downgrade from Method (i) to (ii) for the
deletion task. To elucidate the cause of this performance downgrade, we analyzed
a sample in which Method (i) outperformed Method (ii) on the deletion score.
As shown in Fig. C, in such samples, Method (ii) generates a slightly larger high-
attribution region, indicated in red, than Method (i). This leads to a delayed drop
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Table C: Comparison of different LRP rules on the ImageNet. Ins. and Del. refer to
Insertion and Deletion scores, respectively.

Method [%] Ins. (↑) Del. (↓) ID Score (↑)
LRP (ϵ rule) 9.5 8.3 1.1
LRP (Mixture of rules) 8.6 7.5 1.1
Ours (Mixture of rules) 64.6 0.2 64.4
Ours (z+ rule) 56.3 1.8 54.5

in classification accuracy when higher attribution regions are deleted, thereby
slightly downgrading the deletion score.

D.3 Discussion on the LRP rules

We used the ϵ rule to obtain the baseline results. To investigate the impact of the
choice of LRP rules for the baseline results, we conducted additional experiments
using the mixture of rules. The mixture of rules employs the ϵ rule for layers after
the eighth bottleneck block and the α1β0 rule for the other layers. The α1β0
rule is equivalent to the z+ rule [20], which we have adopted in our proposed
method. As shown in Table C, we observed that our mixture of rules performs
comparably to the ϵ rule.

Furthermore, to examine the impact of LRP rule selection on our proposed
method, we applied the same mixture of rules to our approach. As shown in
Table C, we did not observe any critical influence on the results by changing the
rules; rather, the quantitative results slightly improved.

D.4 Error Analysis

We conducted an error analysis on ImageNet. We defined a failure of explanation
generation as cases where the ID score was not greater than 0.371, the highest
score achieved by the baseline methods (specifically by Grad-CAM [34]). There
were 311 instances in which the explanation generation process failed. These
failures represent 31.1% of the total generated attribution maps.

For the error analysis, we investigated 100 samples selected in ascending order
based on their ID scores. The causes of failure in these samples can be broadly
categorized into three groups:

• IA (Insufficiently Attended): This category includes cases where the area
of attribution is too small, indicating insufficient focus on relevant regions.
Fig. D (a) illustrates an IA example.

• OA (Over-Attended): This category represents cases where the area of rel-
evance is excessively large, suggesting that too much of the image is being
considered relevant. Fig. D (b) presents an OA example.
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“Solar Collector” “Oboe” “Bubble”
(a) Insufficiently Attended (b) Over-Attended (c) Wrongly Attended

Fig.D: Examples of failure categories in relevance attribution. (a) Insufficiently At-
tended where the area of focus is too narrow and fails to cover all relevant regions. (b)
Over-Attended where an excessively large area is deemed relevant, indicating a lack of
precision in identifying relevant features. (c) Wrongly Attended where the relevance is
attributed to areas that do not directly contribute to the classification decision.

Table D: Number of failure cases in each failure category. IA, OA and WA are the three
failure categories: Insufficiently Attended, Over-Attended, and Wrongly Attended, re-
spectively. The number of the most frequent failures is highlighted in bold.

Failure category IA OA WA

#Failure 40 25 35

• WA (Wrongly Attended): This category comprises cases where relevance is
assigned to pixels that do not directly contribute to the classification. An
example of WA is shown in Fig. D (c).

Table D indicates that the most common cause of errors is focusing on an in-
sufficient area of the image. This observation suggests that our method might, in
some instances, excessively restrict the distribution of attribution. This finding
is consistent with our method’s tendency to minimize the dispersion of attri-
bution to non-relevant regions, as observed in Sec. 5.4 in the main text, which
could contribute to this issue. This highlights a potential area for refinement in
our relevance score splitting rule. Adjusting the splitting rule accordingly could
reduce the number of errors.

E Additional Qualitative Results

Figs. E and F show additional qualitative comparisons of our proposed method
against baseline methods. In order to provide a clearer view, the panels show
larger images than those presented in the main text. In each figure, the top row
displays the original image, while the bottom row presents the attribution maps
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generated by our method. The rows in the middle show the results from baseline
methods.

Attribution maps generated by the original Layer-wise Relevance Propaga-
tion (LRP) [3] tended to be noisy and often failed to sufficiently highlight relevant
regions, as demonstrated in the second rows of Figs. E and F. The third and
fourth rows of Figs. E and F present explanations generated by Grad-CAM [34]
and Score-CAM [44], respectively. Results from both methods have attention
regions that encompass the whole of the relevant objects, but also include the
background surrounding them. In contrast, attribution maps generated by our
proposed method sharply focus on the relevant objects and demonstrate minimal
attention to irrelevant regions such as background, thus yielding more appropri-
ate explanations.



Layer-Wise Relevance Propagation with Conservation Property for ResNet 25

O
ri

gi
na

l
L
R

P
[3

]
G

ra
d-

C
A

M
[3

4]
Sc

or
e-

C
A

M
[4

4]
O

ur
s

Fig. E: Attribution maps produced by each explanation method for the prediction
of ResNet50 with respect to the ground-truth classes (left to right): “Water Ouzel,”
“Arabian Camel,” “Ram.”
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Fig. F: Attribution maps produced by each explanation method for the prediction of
ResNet50 with respect to the ground-truth classes (left to right): “Wombat,” “Rock
Wren,” “Geococcyx.”
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