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"PRECOG: PREdiction Conditioned On Goals in Visual Multi-Agent Settings” [Rinhart+ (Carnegie Mellon Univ), ICCV19]

e Objective: Develop a probabilistic forecasting model to predict future interactions between multiple agents (vehicles) by understanding the goals of a

controlled agent, in this case, an Autonomous Vehicle.

e Methodology: The model uses real and simulated data to forecast vehicle trajectories based on past positions and LIDAR data. It performs both

standard forecasting and conditional forecasting, which predicts how all agents will likely respond to the goal of a controlled agent.

e Model Implementation and Experiments: The paper describes the implementation of a factorized flow-based generative model called "Estimating
Social-forecast Probabilities" (ESP) and a goal-conditioned forecasting method called "Prediction Conditioned on Goals" (PRECOG).
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Forecasting on nuScenes [4]. The input to our model is a high-dimensional
LIDAR observation, which informs a distribution over all agents’ future

trajectories.

e — F4 'Z". il
=g g i, i
) Z; pAS E z o 2 2 = iy, 0 fio, Jip.
Interpolate ""' RNN
200 NP
¢ —» 5] —= 5 pooow 5 ¢ —» 8] —» 5} B 5] "']{\:\- \\ r'E
F 1 A
\ \ 2 ™ \ \ e . g
4 N
\ « 3 \ ha, [nterpolatefis RNN
- PR 4 b —p 84 ool 8E 200 200 : , |
2 O Conmy I |.1~"7|r‘ ff'}1‘ 'T'i‘ |”I1'-o.l!
e 5 = ees (gt
/ ' ' ' Bp 1 T
Z Z Zh = z) o zh > 2 !

(a) ESP forecasting (b) PRECOG planning (c) ESP model implementation

Figure 3: Our factorized latent variable model of forecasting and planning shown for 2 agents. In Fig. 3a our model uses latent variable
Z} ., to represent variation in agent a’s plausible scene-conditioned reactions to all agents S;, causing uncertainty in every agents’ future
states S. Variation exists because of unknown driver goals and different driving styles observed in the training data. Beyond forecasting,
our model admits planning robot decisions by deciding Z" =z" (Fig. 3b). Shaded nodes represent observed or determined variables, and
square nodes represent robot decisions []. Thick arrows represent grouped dependencies of non-Makovian S; “carried forward” (a regular
edge exists between any pair of nodes linked by a chain of thick edges). Note Z factorizes across agents, isolating the robot’s reaction
variable z”. Human reactions remain uncertain (Z" is unobserved) and uncontrollable (the robot cannot decide Z™), and yet the robot’s
decisions z" will still influence human drivers S%.- (and vice-versa). Fig. 3c shows our implementation. See Appendix C for details.
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Conditioning the model on different Car 1 goals produces different
predictions: here it forecasts Car 3 to move if Car 1 yields space, or

stay stopped if Car 1 stays stopped.

RHINEHART, Nicholas, MCALLISTER, Rowan, KITANI, Kris, Sergey LEVINE. PRECOG: PREdictions Conditioned On Goals in Visual Multi-Agent Scenarios. 2

ICCV (2019), code, link


https://github.com/nrhinehart/precog
https://arxiv.org/pdf/1905.01296.pdf

"A Generalist Agent" (GATO) [Reed+ (DeepMind), Transactions on Machine Learning Research (11/2022) ]

o Approach: Gato, the agent, can perform a wide range of tasks, including playing Atari games, captioning images, chatting, and manipulating objects
with a robotic arm. It decides what outputs to generate (text, joint torques, button presses, etc.) based on its context.

e Methodology: The model uses a transformer neural network similar to large-scale language models. It's trained to handle various data types by
serializing them into tokens, including images, text, proprioception, joint torques, button presses, and other actions.

o Performance Analysis: It demonstrates Gato's capabilities in various simulated control tasks, robotics, and text samples, showing that the model

can achieve impressive results across different domains.
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Figure 3: Running Gato as a control policy. Gato consumes a sequence of interleaved tokenized observations,
Figure 2: Training phase of Gato. Data from different tasks and modalities is serialized into a flat sequence of separator tokens, and previously sampled actions to produce the next action in standard autoregressive manner.

tokens, batched, and processed by a transformer neural network akin to a large language model. Masking is used The new action is applied to the environment — a game console in this illustration, a new set of observations is
such that the loss function is applied only to target outputs, i.e. text and various actions. obtained, and the process repeats.

REED, Scott, ZOLNA, Konrad, PARISOTTO, Emilio, et al. A generalist agent, arXiv preprint arXiv:2205.06175, 2022 3
unofficial code, link


https://github.com/kyegomez/GATO
https://arxiv.org/pdf/2205.06175.pdf

"Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm" [Silver+ (DeepMind), arxiv
preprinti17]

e Objective: The development of AlphaZero, a single algorithm capable of learning and achieving superhuman performance in chess, shogi, and Go through
self-play, without domain knowledge other than the game rules.

e Methodology: AlphaZero uses a deep neural network and a general-purpose Monte Carlo tree search (MCTS) algorithm. It learns strategies and tactics
entirely from self-play without prior knowledge.

e Results: Within 24 hours, AlphaZero achieved a superhuman level of play in all three games and convincingly defeated world-champion programs in each
case.

e General Reinforcement Learning Algorithm: AlphaZero represents a significant shift from specialized, domain-specific Al to a more generalist approach. It
does not rely on historical data but learns from scratch through self-play.

e Deep Neural Networks and MCTS: AlphaZero combines deep neural networks with a powerful search algorithm (MCTS), enabling it to evaluate and decide

on the most promising moves in complex game scenarios.
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Figure 1: Training AlphaZero for 700,000 steps. Elo ratings were computed from evaluation
games between different players when given one second per move. a Performance of AlphaZero
in chess, compared to 2016 TCEC world-champion program Stockfish. b Performance of Al-
phaZero in shogi, compared to 2017 CSA world-champion program Elmo. ¢ Performance of
AlphaZero in Go, compared to AlphaGo Lee and AlphaGo Zero (20 block / 3 day) (29).

SILVER, David, HUBERT, Thomas, SCHRITTWIESER, Julian, et al. Mastering chess and shogi by self-play with a general reinforcement 4

learning algorithm,arXiv preprint arXiv:1712.01815, 2017, unofficial code, link


https://github.com/suragnair/alpha-zero-general
https://arxiv.org/pdf/1712.01815.pdf

face detector using only unlabeled images.
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Figure 1. The architecture and parameters in one layer of
our network. The overall network replicates this structure
three times. For simplicity, the images are in 1D.

LE, Quoc V. Building high-level features using large scale unsupervised learning ICML, 2013. p. 8595-8598

million 200x200 pixel images downloaded from the Internet.

Figure 3. Top: Top 48 stimuli of the best neuron from the
test set. Bottom: The optimal stimulus according to nu-

merical constraint optimization.

link

"Building High-level Features Using Large Scale Unsupervised Learning," [Quoc V. LE+ (Google), ICML13]

« Objective: The paper explores building high-level, class-specific feature detectors from only unlabeled data. It aims to answer whether it is possible to learn a
« Methodology: The authors trained a 9-layered locally connected sparse auto encoder with pooling and local contrast normalization on a large dataset of 10

« Results: The results showed that it is possible to train a feature detector for faces without labeled images. The model was robust to translation, scaling, and out-

of-plane rotation and was also sensitive to other high-level concepts like cat faces and human bodies.

Figure 6. Visualization of the cat face neuron (left) and

human body neuron (right).



http://static.googleusercontent.com/media/research.google.com/en/archive/unsupervised_icml2012.pdf

Solving Challenging Math Word Problems Using GPT-4 Code Interpreter with Code-based Self-verification [Zhou+

(MMLab), arxiv preprint2023]

e Objective: The study aims to improve the reasoning capability of GPT-4 in solving challenging math problems by introducing constraints on Code

Usage Frequency and implementing a code-based self-verification (CSV) method.

e Methodology: The paper explores GPT-4's ability to generate and execute code, evaluate the output of code execution, and rectify its solution. The

authors propose the CSV method, which uses zero-shot prompts to encourage GPT-4 to self-verify its answers using code.

e Results: This approach significantly boosts the model's accuracy in solving math problems, as demonstrated by a dramatic increase in zero-shot

accuracy on the MATH dataset (from 53.9% to 84.3%).
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Figure 1: Example from the 277th number theory problem in the MATH dataset: (a) Prompt 1 gen-
erates intermediate text-only reasoning steps. (b) Prompt 2 generates intermediate text reasoning
steps and post-hoc Python code, akin to PAL (Gao et al., 2023). (¢) Basic prompt that set no con-
strain on code usage. Details of the three prompts are presented in Sec. 3.1, (For more examples,
see Tab. 9 and Tab. IIU )
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Q1]E.§tl('ln. We can firstly change the inequality into x > i’.-”lUUUUUUUU.
What is the smallest positive integer solution Then let's evaluate the fourth oot of 100,000,000,

100,000,000 0
to () <17

Answer: 101

import math

root = math.pow( 100000000, 1/4)
smallest_integer = math.ceil(root)

) i === (100.0, 100)
(a) Example: w/o self verification — .
Thus, the smallest positive integer = is 100,

Let’s verify this solution.

Breaking this down into subproblems, the first step is to reamange
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This gives us & > ¥ 100000000. >>> False

it ey The smallest integer @ should be the next integer greater than 10,

not 100 mself.
Let’s calculate that next integer.
import math

ool = math.pow( 100000000, 1/4)
>=> 100

smallest-integer = 100 + 1
verification = 1e8 / (smallest_integer »= 4) < 1
=>=> (101, True)

Since 100 is already a positive integer, the smallest positive integer

Upon substituting = = 101 back, it holds true, which verifies our

< lisz = 100,

: : o 100,000,000
solution to the inegquality —?—

solution.

The final answer is . x The final answer is /

. . . r

Figure 3: Question from the 712th intermediate algebra problem in the MATH dataset. (a) Without self-
verification, the model generates a wrong answer. (b) With self-verification, the model corrects the error and
generates the correct answer. The CSV prompt: To selve the problem using code interpreter step by step, and
please verify your answer using code interpreter.
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Figure 4: (a) Illustration of the Naive majority voting (Wang et al., 2023) and our Verification-guided
weighted majority voting. The full pipeline of the proposed Verification-guided Weighted Majority
Voting framework. We use the model to generate several different solutions. Then we detect the
self-verification state of each solution, and classify them into three states: True, Uncertain, and
False. According to the state of the verification, we assign each solution a different weight, and use
the classified result to vote the score of each possible answer.
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https://arxiv.org/pdf/2308.07921.pdf

GPT4 Technical Report [OpenAl, 2023]

e Description: GPT-4 is equipped with capabilities to understand and generate

responses related to mathematical problems. It can interpret and solve a wide range

of mathematical questions, from basic arithmetic to more complex fields such as

calculus, algebra, and statistics. The model is designed to process textual

descriptions of mathematical problems and provide solutions or explanations in a

human-readable format.

e Accuracy Concerns: While GPT-4 is generally reliable, it is not infallible and can

sometimes provide incorrect or misleading solutions, necessitating cross-

verification.

e Lack of Intuition: The model does not possess human-like intuition or

understanding, which can be crucial in solving more nuanced or abstract

mathematical problems.

OpenAl, GPT-4 Technical Report.

2023, link

Exam

GPT-4

GPT-4 (no vision)

GPT-3.5

Uniform Bar Exam (MBE+MEE+MPT)
LSAT
SAT Evidence-Based Reading & Writing
SAT Math
Graduate Record Examination (GRE) Quantitative
Graduate Record Examination (GRE) Verbal
Graduate Record Examination (GRE) Writing
USABO Semifinal Exam 2020
USNCO Local Section Exam 2022
Medical Knowledge Self-Assessment Program
Codeforces Rating
AP Art History
AP Biology
AP Calculus BC
AP Chemistry
AP English Language and Composition
AP English Literature and Composition
AP Environmental Science
AP Macroeconomics
AP Microeconomics
AP Physics 2
AP Psychology
AP Statistics
AP US Government
AP US History
AP World History
AMC 10°
AMC 12}

Introductory Sommelier (theory knowledge)
Certified Sommelier (theory knowledge)
Advanced Sommelier (theory knowledge)
Leetcode (easy)

Leetcode (medium)

Leetcode (hard)

298 / 400 (~90th)
163 (~88th)
710 / 800 (~93rd)
700 / 800 (~89th)
163 /170 (~80th)
169 /170 (~99th)
4/6 (~54th)

87/ 150 (99th - 100th)

36/ 60
75 %
392 (below 5th)
5 (86th - 100th)
5 (85th - 100th)
4 (43rd - 59th)
4 (71st - 88th)
2 (14th - 44th)
2 (8th - 22nd)
5 (91st - 100th)
5 (84th - 100th)
5(82nd - 100th)
4 (66th - 84th)
5 (83rd - 100th)
5 (85th - 100th)
5 (88th - 100th)
5 (89th - 100th)
4 (65th - 87th)

30/ 150 (6th - 12th)
60/ 150 (45th - 66th)

92 %
86 %
77 %
31/41
21/80
3/45

298 / 400 (~90th)
161 (~83rd)
710 / 800 (~93rd)
690 / 800 (~89th)
157 /170 (~62nd)
165/ 170 (~96th)
416 (~54th)

87 /150 (99th - 100th)

38/ 60

75 %
392 (below 5th)
5 (86th - 100th)
5 (85th - 100th)
4 (43rd - 59th)
4 (71st - 88th)
2 (14th - 44th)
2 (8th - 22nd)
5 (91st - 100th)
5 (84th - 100th)
4 (60th - 82nd)
4 (66th - 84th)
5 (83rd - 100th)
5 (85th - 100th)
5 (88th - 100th)
4 (74th - 89th)
4 (65th - 87th)

36 / 150 (10th - 19th)
48 / 150 (19th - 40th)

92 %
86 %
77 %
31741
21/80
3/45

213 /400 (~10th)
149 (~40th)
670/ 800 (~87th)
590 / 800 (~70th)
147 /170 (~25th)
154 / 170 (~63rd)
416 (~54th)

43/ 150 (31st - 33rd)

24/ 60

53 %
260 (below 5th)
5 (86th - 100th)
4 (62nd - 85th)

1 (Oth - 7th)

2 (22nd - 46th)
2 (14th - 44th)
2 (8th - 22nd)
5 (91st - 100th)
2 (33rd - 48th)
4 (60th - 82nd)
3 (30th - 66th)
5 (83rd - 100th)
3 (40th - 63rd)
4 (77th - 88th)
4 (74th - 89th)
4 (65th - 87th)

36/ 150 (10th - 19th)
30 / 150 (4th - 8th)

80 %
58 %
46 %
12/41
8/80
0745

Table 1. GPT performance on academic and professional exams. In each case, we simulate the
conditions and scoring of the real exam. We report GPT-4’s final score graded according to exam-
specific rubrics, as well as the percentile of test-takers achieving GPT-4’s score.


https://arxiv.org/pdf/2303.08774.pdf

MINEDOJO: Building Open-Ended Embodied Agents with Internet-Scale Knowledge [Fan+ (NVIDIA), NeurIPS22]

e Objective: VOYAGER is developed to continuously explore the Minecraft world, acquire diverse skills, and make novel discoveries without human
intervention.

o Methodology: An automatic curriculum maximizing exploration. An ever-growing skill library of executable code for storing and retrieving
complex behaviors. A novel iterative prompting mechanism that incorporates environment feedback, execution errors, and self-verification for
program improvement.

 Interaction with GPT-4: VOYAGER interacts with GPT-4 via black box queries, eliminating the need for model parameter fine-tuning.

« Results: It achieves significant milestones, such as obtaining 3.3 times more unique items, traveling 2.3 times longer distances, and unlocking key

tech tree milestones up to 15.3 times faster than previous state-of-the-art methods.
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Figure 1: MINEDOIJO is a novel framework for developing open-ended, generally capable agents _ _ _ . _ _ )
that can learn and adapt continually to new goals. MINED0JO features a benchmarking suite with Figure 4: Algorithm design. MINECLIP is a contrastive video-language model pre-trained on
thousands of diverse open-ended tasks specified in natural language prompts, and also provides an MINEDOJO’s massive Youtube database. It computes the correlation between an open-vocabulary
internet-scale, multimodal knowledge base of YouTube videos, Wiki pages, and Reddit posts. The language goal string and a 16-frame video snippet. The correlation score can be used as a learned

database captures the collective experience and wisdom of millions of Minecraft gamers for an Al dense reward function to train a strong multi-task RL agent.
agent to learn from. Best viewed zoomed in.

FAN, Linxi, WANG, Guanzhi, JIANG, Yunfan, et al. Minedojo: Building open-ended embodied agents with internet-scale knowledge.
Advances in Neural Information Processing Systems, 2022, vol. 35, p. 18343-18362., code, link



https://github.com/MineDojo/MineDojo
https://arxiv.org/pdf/2206.08853.pdf

EUREKA: Human-Level Reward Design via Coding Large Language Models" [MA+ (NVIDIA), arXiv preprint23]

« Objective: The paper introduces EUREKA, an algorithm that uses coding LLMs to autonomously generate reward functions for RL tasks, aiming to

achieve human-level performance in reward design without task-specific prompts or predefined templates.

« Approach: EUREKA leverages the code-writing and zero-shot generation capabilities of LLMs to perform evolutionary optimization over reward code,

resulting in rewards that can be used to acquire complex skills through reinforcement learning.

o Results: The algorithm outperforms human experts in 83% of tasks across 29 open-source RL environments, showing an average normalized

improvement of 52%. EUREKA also introduces a new gradient-free approach to reinforcement learning from human feedback (RLHF), improving the

quality and safety of generated rewards.

Figure 1: EUREKA generates human-level reward functions across diverse robots and tasks. Combined with
curriculum learning, EUREKA for the first time, unlocks rapid pen-spinning capabilities on an anthropomorphic
five-finger hand. Figures rendered using Omniverse (NVIDIA, 2023).

Environment Code

class ShadowHandPenSpin({VecTask):
def compute_observations(self)
self.obj_pose = ...
self.obj_pos = ...
self.obj_rot = ..,
self.obj_linvel = ...
self.obj_angvel = ...

self.tgt_pose = ...
self.tgt_pos = ...
self.tgt_rot = ...

self. fingertip_state = . .
self.fingertip_pos = ...

self. compute_full_state()

def compute_full_state(self):

Task Description

To make the shadow hand spin the pen
to a target orientation

& Coding LLM
(GPT 4)

Query with
Feedback

We trained a RL policy using the
provided reward function code..
av_penalty: ['®.82', '0.85',
‘e.85', '0.84', 'B.03', ...]
success_rate: ['@.088', '@8.38',

s L LI T ILILE ) LI |
Please carefully analyze the policy
feedback and provide a new, improved
reward function...

def

c:l\ obj_rot, obj_angvel, ...

):
Rewar E' # Angular velocity penalty
Candidate |  av.norm = torch.nor(obj_angvel)

av_penalty = torch.where(

Sampling
bt |

.
I

)

Eureka

Q

Reward
Reflection

compute_reward(

av_norm > 2.8,
torch.exp(av_norm - 2.0)

253
GPU-
Accelerated RL

Figure 2: EUREKA takes unmodified environment source code and language task description as context to
zero-shot generate executable reward functions from a coding LLM. Then, it iterates between reward sampling,
GPU-accelerated reward evaluation, and reward reflection to progressively improve its reward outputs.

MA, Yecheng Jason, LIANG, William, WANG, Guanzhi, et al. Eureka: Human-level reward design via coding large language models. arXiv preprint

arXiv:2310.12931, 2023., code, link
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Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity [Pathak+ (Berkeley),
NeurIPS19]

e Objective: Primitive agents, or limbs, can link up to solve tasks. Each limb has a neural net controlling the torque applied to its joints, and they can

dynamically link and unlink, changing the agent's shape.
o Approach: The policy architecture of these self-assembling agents is represented via dynamic graph networks, aligning with the agent's morphology.

e Modular Co-Evolution: Investigating the co-evolution of control and morphology, the research uses a minimalist design for agents and environments,

ensuring natural emergence of complex morphologies.

Standing - Locomotion
I T
=
=
1, . A %‘0 I
A \ J s { \ / | \ ]
.rl | b r" ! 'I ! L v =} A .-': I 3
f ,'1_ |}_. \ | /,f!/ l : \ g % o h. . 77 | _ g \ P
training 5 trai ning More Limbs Fewer Limbs Wind Water
Figure 3: Co-evolution of Morphology w/ Control during Training: The gradual co-evolution of controller as
well as the morphology of self-assembling agents over the course of training for the task of Standing Up (left)
and Locomotion (right).
o
Environment Agent Modular Policy E
Parent E
Limb Output =
I\'ldgnctlc message 8
Potential I‘Llomt : -~
!’, g attachment [ unattached
""J: .". : : =~ ’," Action
o L \ '
/ Child”

Hurdles Gaps Stairs . Valley

\ \ Limb Input
£ S S +— Training — Zero-Shot Generalization
Figure 1: This work investigates the joint learning of control and morphology in self-assembling agents. Several . : : . . . .
primitive agents, containing a cylindrical body with a configurable motor, are dropped in a simulated environment Flgum_ 2: We illustrate our dynamic dgem“’_ in two en}fllonmentf, / tasks: !-.tg[ldllng = - ar}d IOCOIHQtlon. : For
each of these, we generate several new environment for evaluating generalization. Refer to project video

(left). These primitive agents can self-assemble into collectives using magnetic joints (middle). The policy of
the self-assembled agent is represented via proposed dynamic graph networks (DGN) with shared parameters
(modular) across each limb (right).

athttps://pathak22.github.io/modular-assemblies/ for better understanding of tasks.
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The Sensory Neuron as a Transformer: Permutation-Invariant Neural Networks for Reinforcement Learning [Tang+

(GoogleBrain), NeurIPS21]

e Objective: The paper explores artificial systems that can adapt to sensory substitutions without retraining. It focuses on the development of sensory

networks that can integrate information received locally and collectively produce a globally coherent policy. These systems are also capable of handling

random permutations of their inputs during an episode.

e Methodology : The concept of sensory substitution is explored, where the brain uses one sensory modality to supply environmental information typically

gathered by another sense. The paper aims to create artificial systems that rapidly adapt to such sensory substitutions.

e Sensory Neurons with Attention : The approach involves feeding each sensory input into distinct neural networks without a fixed relationship with one

another. An attention mechanism is employed to allow these networks to communicate and form a coherent global policy.

e Results: Experiments are conducted on different Reinforcement Learning (RL) environments to study the properties of permutation-invariant RL agents.

These include tasks like Cart-pole swing up, PyBullet Ant, Atari Pong, and CarRacing.

Attention —a-

Figure 2: Overview of Method. AttentionNeuron is a standalone layer, in which each sensory neuron
only has access to a part of the unordered observations o;. Together with the agent’s previous action
a;_1, each neuron generates messages independently using the shared functions f.(o.[i], a;—;) and
Ju(0¢[i]). The attention mechanism summarizes the messages into a global latent code m;.

Figure 1: Comparison of visual input intended for the game player, and what our system receives.

We partition the visual input from CarRacing (Left) and Atari Pong (right) into a 2D grid of small
patches, and randomly permute their ordering. Each sensory neuron in the system receives a stream
of visual input at a particular permuted patch location, and through coordination, must complete the
task at hand, even if the visual ordering is randomly permuted again several times during an episode.

TANG, Yujin et HA, David. The sensory neuron as a transformer: Permutation-invariant neural networks for reinforcement learning. 11

Advances in Neural Information Processing Systems, 2021, vol. 34, p. 22574-22587.,code link


https://github.com/google/brain-tokyo-workshop
https://arxiv.org/pdf/2109.02869.pdf

"Meta-Learning Bidirectional Update Rules [Sandler+ (Google), ICML21]

e Objective: This paper introduces a generalized neural network with multiple neuron and synapse states. It shows that traditional gradient-based
backpropagation can be seen as a two-state network case. The paper proposes a framework where networks don't rely on gradients but use a
bidirectional Hebb-style update rule, parameterized by a shared low-dimensional "genome."

e Methodology : The authors propose learning the rules for both forward and back-propagation of neuron activation from scratch, introducing a
generalization where neurons can have multiple states.

e BLUR (Bidirectional Learned Update Rules) : Describes a set of multi-state update rules, enabling networks to learn new tasks without explicit
gradients. The meta-learned "genomes" can train networks on unseen tasks faster than gradient-based methods.

e Meta-Learning the Genome: The process involves meta-learning genomes that can solve classification problems with multiple hidden layers. The
approach includes using both traditional optimization techniques and evolutionary strategies like CMA-ES (Covariance Matrix Adaptation

Evolution Strategy).
Meta-Learning Bidirectional Update Rules

Y

\/

Aw;j ~ (:.._?Ja.gl) Awjy ~ aE.z]ag-”

Figure 1. Generalization of a three layers feed-forward neural networks as a multi-state systems. Left: Forward pass and chain-rule
backpropagation organized as a generalized two-state network. Arrows indicate the flow of information from forward and backward passes
to synapse updates. Righi: Our proposed generalized formulation. Green nodes, defined in the genome, control the amount of mixing
between the states. They are fixed during the synapse update (inner-loop) and are optimized during the meta-training (outer-loop). Grey
boxes indicate multi-state variables. Orange boxes represent activation functions. Notice the symmeiry between forward and backward
passes.

SANDLER, Mark, VLADYMYROYV, Max, ZHMOGINOYV, Andrey, et al. Meta-learning bidirectional update rules. In : International Conference on 12
Machine Learning. PMLR, 2021. p. 9288-9300, link


https://arxiv.org/pdf/2104.04657.pdf

A Zero-Shot Language Agent for Computer Control with Structured Reflection [Li+ (Google), EMNLP23]

Objective: The paper introduces a zero-shot language agent capable of performing tasks in a live computer environment without needing expert traces or
extensive training on specific tasks. This agent can plan executable actions in a partially observed environment and iteratively learn from its mistakes through
self-reflection and structured thought management.

Methodology: The paper builds upon previous works using large language models (LLMs) for action generation and task completion in various environments.
It addresses the limitations of requiring expert traces for learning, proposing a zero-shot agent that adapts and learns autonomously.

Zero-Shot Learning Approach: The agent uses PaLM2, a recent LLM, and a unified instruction prompt set across different tasks, avoiding the need for task-

specific customization.

Structured Reflection and Thought Management: The agent employs a reflection mechanism to learn from exploration failures, using a structured thought
management strategy to improve performance over time.

Enter “An" to the input. Press ARROWDOWN x 3 press ENTER click the submit rt:-llectinn
Algorithm 1: Structured Thought Management Tooaet oo e o ol s (o
I: R=[J]*N; D =[] *N; B T a— =it
2: fOI‘ t e [0’ T): t=0 Andorra Andorra P :_:d::::r“&;:’h:‘::f’::
3: forie[0,N): Angola ey . PO —— "
’ = ﬂngunla 'W: BUQQeSTiON:
. M . . . . Antarcti Antarcti iy oame o et
4:  if R[i] and R[i].a’ ¢ D[i]: //if has reflection rotgua Fopmiepe S
o L . . ik sk
5 a; = R[i].a // action from reflection e e e e
6: else: a; ~ 79 (a, | .. ) // regular planmng At bt s, N adeeunier | A endemdseth o, ot amd e
7. if needToReflect: // if error happens - - - -
) |An ] | Anguilla | |Antarctical | |Antarctical |
8:  (aj,a}) ~REFLg(...) //reflect = oo sodor o 0
: . . Angola Angola Angola
9 if R[j] # - anguka TR | o
10: Dl[jl.add(R[j].a)  // record wrong click —— e
. ; : Aatgua an Antgua an Aiguaand | )
11:  R[j] = (aj, a;) // record verbal reflection
12: R[j' 41 ;] = Q, D[j 41 ;] = Q // clear mem Figure 3: An example of successful reflection trial by our zero-shot agent on MINIW OB ++ task use-autocomplete with seed=0.
Step actions are paraphrased from the actual executable ones for readability.

LI, Tao, LI, Gang, DENG, Zhiwei, et al. A Zero-Shot Language Agent for Computer Control with Structured Reflection. EMNLP, 2023. 13
code, link



https://github.com/google-research/google-research/tree/master/zero_shot_structured_reflection
https://arxiv.org/pdf/2310.08740v3.pdf

Generalization to New Sequential Decision Making Tasks with In-Context Learning [Raparthy+ (Meta), arxiv preprint23]

e Objective : The goal is to enhance transformers for new sequential decision-making tasks using limited demonstrations, addressing limitations
in traditional transformers.

e Methodology: The approach involves training on sequences of trajectories, emphasizing large model and dataset sizes, task diversity, stochastic
environments, and trajectory burstiness. This includes using a causal transformer model trained on multiple trajectory sequences.

e In-Context Learning: The study evaluates the improved in-context learning ability on unseen tasks in diverse environments like MiniHack and

Procgen, demonstrating enhanced performance in adapting to new sequential decision-making challenges.

Dataset Trajectory Training
Procgen Levels Train Tasks Test Tasks from Level A
(Fruitbot) Causal Transformer
= Trajectory
xpert from Level B A y N VN

Trajectories _‘ U U
R — e
- from Level C Lo E————g ———————————— :

Bigfish BOSSfIght Chaser Leaper
. ﬂ Climber Sequence Construction Few-Shot Evaluation
" - 1 _pb Trajectory Trajectary Trajectory
2] | fromLevel B from Level A from Level C
: & Causal Transformer
Caveflyer Fruitbot Miner Heist Input Sequence |

5 (\\\ Trajectory Trajectory Trajectory
Jumper from Level B from Level A from Level A 4. 4
3 L] L]
%/‘ \i | Expert Traj. ” Expert Traj. |‘“ : Unroll :

& z ‘-“S‘t‘ .I - Different trajectories from the same . J .
Coinrun Maze Dodgeball arpilo level Context Query

Figure 1 lllustration of Train and Test Tasks. (Left) A collection of procedurally generated Procgen levels from the Fleure’2 Experimental Satup: e cieste a.datasst of expert irajsctories by tolling out expert policles on IV asis.

Fruitbot task, demonstrating the complexity and diversity inherent in the environment’s design. (Middle) Tasks used Given these expert trajectories, we construct multi-trajectory sequences with trajectory burstiness p,. A sequence
for training. (Right) Tasks used for testing. Note that the test tasks are entirely distinct from the training tasks, and is bursty when there are at least two trajectories in the sequence from the same level. However, note that these
each of them is procedurally generated, consisting of multiple levels. trajectories are typically different due to the environment’s stochasticity. These multi-trajectory sequences then serve

as input to the causal transformer, which we train to predict actions. During evaluation, we condition the transformer
on a few expert trajectories from an unseen task, then rollout the transformer policy until the episode terminates.
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Supervised Pretraining Can Learn In-Context Reinforcement Learning [Lee+ (Stanford Univ.), arxiv preprint23]

e Objective: The paper aims to explore the capability of transformers in in-context reinforcement learning (RL), focusing on decision-making

in bandits and Markov decision processes.

o Methodology: Introduces the Decision-Pretrained Transformer (DPT), a supervised pretraining method for transformers, where they predict

optimal actions based on a state and in-context dataset of diverse task interactions.

e In-Context Learning: Demonstrates DPT's ability to handle unseen reward distributions, generalizing to new offline and online decision-

making problems, and improving upon its pretraining data by exploiting latent structures. Theoretically, DPT aligns with Bayesian posterior

sampling, a sample-efficient RL algorithm.

Algorithm 1 Decision-Pretrained Transformer (DPT): Training and Deployment

// Collecting pretraining dataset

Initialize empty pretraining dataset B

for 7 in [N] do
Sample task 7 ~ Ty, in-context dataset D ~ Dy (+; T), query state Squery ~ Dauery
Sample label a* ~ 7%(-|Squery) and add (Squery, D, a*) to B

end for

// Pretraining model on dataset

Initialize model My with parameters 6

while not converged do
Sample (Squery, D, a*) from B and predict ;(-) = Mp(|Squery, D;) for all j € [n]
Compute loss in (2) with respect to a* and backpropagate to update 6.

: end while

: // Offline test-time deployment

: Sample unknown task 7 ~ Teq, sample dataset D ~ Dieg(+; T)

: Deploy Mg in 7 by choosing ay, € argmax,. 4 Mg(a|sn, D) at step h
: // Online test-time deployment

: Sample unknown task 7 ~ T and initialize empty D = {}

: for ep in max_eps do

Deploy Mjy by sampling a;, ~ My(:|sp, D) at step h
Add (s1,a1,71,...)to D

: end for

M@( ’ | T D)
51, A1, 11, Si Sy, Ay, Ta, 55 """ Snr Ans Ty 5:: K—/

o i i """ l * L Online Exploration
Transformer Mo (@l5uery. D)

1 ' %—}MH(-I-,D)

Sq},l‘i’l‘y‘ aquery

TN

Offline Learning

*

Figure 1: A transformer model M is pretrained to predict an optimal action agy.,y from a state squery in a task,
given a dataset of interactions from that task. The resulting Decision-Pretrained Transformer (DPT) learns a
distribution over the optimal action conditioned on an in-context dataset. My can be deployed in new tasks
online by collecting data on the fly, or offline by immediately conditioning on a static dataset.
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Pearl: A Production-Ready Reinforcement Learning Agent [Zhu+ (Meta), arxiv preprint23]

e Objective: Develop a versatile, production-ready RL agent addressing challenges like exploration-exploitation balance, partial
observability, and safety in decision-making.

o Methodology: Pearl features modular components, including policy learners, exploration and safety modules, history summarization, and
replay buffers. It supports offline and online learning, dynamic action spaces, and integrates recent algorithmic advancements.

o Application & Benchmarks: Demonstrates Pearl's effectiveness through various benchmarks, including classic RL tasks, neural contextual

bandits, and agent versatility tests. Highlights Pearl's adoption in industry applications like recommender systems and auction bidding.

Pearl - Production-Ready Reinforcement Learning Agent

Agent / Environment \
Policy Learner
Subjective State Optimize
Transition Batch o, Acti (
P . ction . _
4: A I—v S — LReceweActlon I—
L
History [~ 0141
Transition  se— i
: Available
Batch Risk Risk 1 Actions
Prefg‘fem‘l’:‘ Preference o1
_ Bootstrapping HiStOW Constraints i {.‘:UI]S'Ibr;'.'ljl"llS
& Augmentation Summarization Subiective
State
J Observation ( Environment
Replay || History / Response and |« i) return=(g}") pacity:
Buffer I - / @vallable AC“OHS/ (a) PearlAgent Episodic Environment Interaction (b) Hydra Configuration for a PearlAgent

Figure 2: PearlAgent Interaction Interface and Hydra Configeration

Figure 1: Pearl Agent Interface
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Decision Transformer: Reinforcement Learning via Sequence Modeling [Chen+ (UC Berkeley), NeurIPS21]

e Objective: To reimagine RL as a sequence modeling problem, leveraging the simplicity and scalability of transformers for generative
trajectory modeling.

e Methodology: The paper presents the Decision Transformer, an autoregressive model that, unlike traditional RL approaches, generates
optimal actions conditioned on desired returns, states, and past actions.

e Novel Approach in RL: This framework shifts from conventional RL techniques, avoiding the need for value functions or policy gradients,
and instead models a wide distribution of behaviors. It shows promising performance in various tasks, including Atari, OpenAl Gym, and

Key-to-Door tasks, especially in sparse reward settings and long-term credit assignment.

Algorithm 1 Decision Transformer Pseudocode (for continuous actions)

R, s, a, t: returns-to-go, states, actions, or timesteps
transformer: transformer with causal masking (GPT)
embed_s, embed_a, embed_R: linear embedding layers

embed_t: learned episode positional embedding
pred_a: limear action predictiom layer
# main model
def DecisionTransformer(R, s, a, t):
# compute embeddings for tokens
pos_embedding = embed_t(t) # per-timestep (note: not per-token)
s_embedding = embed_=s(s) + pos_embedding
a_embedding = embed_a(a) + pos_embedding

R_embedding = embed R(R) + pos_embedding

L Causa]- transformer = = # interleave tu ens as (R_1, 8_1, a_1, ..., R_K, 8_K)

5_

input_ embads = stack (R_ ﬂmbadd:ng 8 ﬂmbaddlng a_embedding)

HEuHE

# use transformer to get hidden states
hidden_states = transformer (input_embeds=input_embeds)

# select hidden states for actionm prediction tokens
a_hidden = unstack(hidden_states).actions

t_l t-l t_l t t t # predict action
return pred_a(a_hidden)

# 1.1'}11]'[1T‘_!': 1 oop
for (R, s, a, t) in dataloader: # dims: (batch_size, K, dim)
a_preds = DecisionTransformer(R, s, a, t)
loss = mean{(a_preds - a)**2) # L2 loss for continuous actions
. optimizer.zero_grad();: loss.backward(); optimizer.step()

# evaluation loop

...... target_return = 1 # for instance, expert-level return

R, s, a, t, done = [target_return], [env.reset()], []1, [1], False
while not done: # autoregressive generation/sampling
# sample next action
action = DecisionTransformer(R, s, a, t)[-1] # for cts actions
" I . 1l . . " -8, r, d F— .step(action)
Figure 1: Decision Transformer architecture', States, actions, and returns are fed into modality- Ry e T T
. " . " P g . . . . # append new tokens to sequence
specific linear embeddings and a positional episodic timestep encoding is added. Tokens are fed into R =R+ [R[-1) - r] # decrement returns-to-go with reward
: . . . N : . 5, a, t = 8 + [new_s], a + [action], t + [len(R)]
a GPT architecture which predicts actions autoregressively using a causal self-attention mask. R, 5, a, t = R[-K:], ... # only keep comtext lemgth of K
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Rainbow: Combining Improvements in Deep Reinforcement Learning [Hessel+ (DeepMind), AAAI18]

e Objective: Investigate the compatibility and combined effectiveness of various DQN enhancements in reinforcement learning.

e Methodology: Combines six key DQN improvements: Double Q:learning, Prioritized Experience Replay, Dueling Networks, Multi-step

Learning, Distributional Q-Learning, and Noisy Nets, tested on the Atari 2600 suite.

 Integrated Approach Analysis: Presents a comprehensive analysis of how each extension contributes to overall performance, showcasing

Rainbow's superiority in data efficiency and performance on Atari 2600 games compared to standalone DQN enhancements

DQN

DDQN

Prioritized DDQN
Dueling DDQN
200% A3C

Distributional DOQN
Noisy DQN
Rainbow

|1

100%

Median human-normalized score

o 1 i | |
S a4 100 200
Millions of frames

Figure 1: Median human-normalized performance across
57 Atari games. We compare our integrated agent (rainbow-
colored) to DQN (grey) and six published baselines. Note
that we match DQN’s best performance after 7M frames,
surpass any baseline within 44M frames, and reach sub-
stantially improved final performance. Curves are smoothed
with a moving average over 3 points.

Distributional RL. We can learn to approximate the dis-
tribution of returns instead of the expected return. Recently
Bellemare, Dabney, and Munos (2017) proposed to model
such distributions with probability masses placed on a dis-
crete support z, where z is a vector with Nyoms € N7

atoms, defined by z' = wvmn + (i — 1)=j==—"1= for
i € {1,..., Nyoms}. The approximating distribution d; at

time £ is defined on this support, with the probability mass
py(St, A¢) on each atom i, such that d; = (2, pe(St, At)).
The goal is to update # such that this distribution closely
matches the actual distribution of returns.

Dueling networks. The dueling network is a neural net-
work architecture designed for value based RL. It fea-
tures two streams of computation, the value and advantage
streams, sharing a convolutional encoder, and merged by a
special aggregator (Wang et al. 2016). This corresponds to
the following factorization of action values:
J. !

00(5,0) = vy (fe(5)) + ay (fe(s), a) — 2 2elIel5) )

N actions

where &, n, and ¢ are, respectively, the parameters of the
shared encoder f¢, of the value stream v,,, and of the advan-
tage stream a,;; and 6 = {&, 1, u’r} 1s their concatenation.

Double Q-learning. Conventional Q-learning is affected
by an overestimation bias, due to the maximization step in
Equation 1, and this can harm learning. Double QQ-learning
(van Hasselt 2010), addresses this overestimation by decou-
pling, in the maximization performed for the bootstrap tar-
get, the selection of the action from its evaluation. It is pos-
sible to effectively combine this with DQN (van Hasselt,
Guez, and Silver 2016), using the loss

(Riv1+7+145(541, argmax g Si 41 @) —qa(Sk, .4;)]2.

a’

This change was shown to reduce harmful overestimations
that were present for DQN, thereby improving performance.

Noisy Nets. The limitations of exploring using e-greedy
policies are clear in games such as Montezuma’s Revenge,
where many actions must be executed to collect the first re-
ward. Noisy Nets (Fortunato et al. 2017) propose a noisy
linear layer that combines a deterministic and noisy stream,

y= (b + ij £ (b:mésg; O Eb I (wumsy O Eul]m}' (4)

where ¢” and ¢ are random variables, and © denotes the
element-wise product. This transformation can then be used
in place of the standard linear y = b + Wax. Over time, the
network can learn to ignore the noisy stream, but will do so
at different rates in different parts of the state space, allowing
state-conditional exploration with a form of self-annealing.

Multi-step learning. Q-learning accumulates a single re-
ward and then uses the greedy action at the next step to boot-
strap. Alternatively, forward-view multi-step targets can be
used (Sutton 1988). We define the truncated n-step return
from a given state S} as

n—1
(! k
Rf. ) = Z"f{ )Rr+k+i : (2)
k=0
A multi-step variant of DQN 1is then defined by minimizing
the alternative loss,

(R + 4™ max g(Se4n, a’) — qo(St, Ar))>.

Multi-step targets with suitably tuned n often lead to faster
learning (Sutton and Barto 1998).

Prioritized replay. DQN samples uniformly from the re-
play buffer. Ideally, we want to sample more frequently
those transitions from which there is much to learn. As a
proxy for learning potential, prioritized experience replay
(Schaul et al. 2015) samples transitions with probability p;
relative to the last encountered absolute TD error:

T

1

pe X | Ry + Y41 Il'lé}‘iffg(stﬂu a') — qo(Si. Ay)
L
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Vision-Language Models as a Source of Rewards [Baumli+ (Google DeepMind) , arxiv preprint23]

» Objective: Investigate the feasibility of off-the-shelf VLMs in deriving rewards for RL, enhancing agent performance in visual and language-
based tasks.

« Methodology: Employs pretrained CLIP models to create text-based reward functions, focusing on achieving language-based goals in visual
environments like Playhouse and AndroidEnv.

e Innovation in Reward Generation: Demonstrates how VLMs can train RL agents without environment-specific finetuning, showing that

larger VLMs lead to more accurate rewards and more capable agents.

Gsal Lift the pink
boat Scores
Language

Encoder . Softmax
Negatives &
Sc; near a [ ] threshold
el ) i
elicopter Cosine ] ) - Playhouse AndroidEnv
similarity reward ) Put a table
. II I Go near a Lift a lamp next Open clock Open Chrome Open Calendar
1 = = - green roll blue mug to a plane
Image .
Encoder
Observation
(single or multi-frame)
Figl{re 1: Arcl'!itectull'e for Vision-Language Models (VLMs) as rewards. The VLM tra.iped con- Figure 2: Environments and example tasks. (Left) Playhouse [27] consists of Find, Lift, and Pick and
trastively contains an image encoder fy and language encoder go. We embed the current environment Place tasks. (Right) AndroidEnv [29] consists of opening app tasks across various apps on Android.

observation frame(s) using the image encoder, along with the desired goal language descriptions !
and negative language descriptions using the language encoder. The reward is computed by taking
the cosine similarity scores and applying softmax and thresholding.

BAUMLI et al. Vision-Language Models as a Source of Rewards. 19
arXiv preprint arXiv2312.09187, 2023. link,
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Do As I Can, Not As I Say: Grounding Language in Robotic Affordances [Ahn+ (Google), arxiv preprint22]

e Objective: Develop a method to utilize language models for guiding robotic systems in executing complex tasks based on natural language

instructions.

« Methodology: Combines the predictive capabilities of large language models (PaLM) with the practical affordances of robotic systems. The

language model generates task sequences, while the robotic system executes them based on its capabilities and environment understanding.

* Novel Integration for Robotic Tasks: Showcases how combining language understanding with robotic action enables the execution of complex,

multi-step tasks in real-world settings. Demonstrates this integration's effectiveness in enhancing task planning and execution by a robotic

system.

Instruction Relevance with LLMs
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Figure 3: Given a high-level
instruction, SayCan combines
probabilities from a LLM (the
probability that a skill is useful
for the instruction) with the prob-
abilities from a value function
(the probability of successfully
executing said skill) to select the
skill to perform. This emits a
skill that is both possible and
useful. The process is repeated
by appending the skill to the re-
sponse and querying the models

> Evaluate scoring of LLM
> Evaluate affordance function

Algorithm 1 SayCan
Given: A high level instruction i, state sp, and a set of skills IT and their language descriptions £

Ln=0,7=0

2: while £, # “done” do

3: C=40

4 form € Iland ¢, € /11 do

5 D™ = p(leli, by g3 401 Emo)

6 pifortee —pie, s, £y)

7 pcombined — paffordanoepLLM

]: C=CU p;:rcmbined

% end for
10: Tp = rgmax, . C .
11z Execute m,, (s, ) in the environment, updating state s,, , ;

12: n=n+1
13: end while

I spilled my drink, can you help? I spilled my drink, can you help?
1
1

You could try using , LLM Value Functions
i . . \ dEla a vacuum cleaner, 'f'f_‘rd # cloaners et St
I would: 1. Find an apple, 2. ___ again, until the output step is to FEEE  gowerne |
P terminate. Appendix Figures 12 —— Doyouwantmeto | ¥ siathevscan S would
/ fir ner? . find a sponge
- LLM =< VF and 2 focus on the LLM and VFS it SayCan 2. pick up the sponge
A ‘ﬁnd;'s;nnge' 3. come 1o you
CD[IlpDnE:IltS. I'm sorry, | didn't e 4. put down the sponge
FLAN mean to spill it. [ RO 5. done
Figure 1: LLMs have not interacted with their environment and observed the outcome of their responses, and
thus are not grounded in the world. SayCan grounds LLMs via value functions of pretrained skills, allowing
them to execute real-world, abstract, long-horizon commands on robots.
AHN, Michael, BROHAN, Anthony, BROWN, Noah, et al. Do as i can, not as i say: Grounding language in robotic affordances. arXiv 20

preprint arXiv:2204.01691, 2022. link, code
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Curriculum Learning for Cooperation in Multi-Agent Reinforcement Learning [Bhati+ (AI Redefined), NeurIPS23]

e Objective: The study aims to explore and establish efficient training strategies for cooperative multi-agent systems, focusing on the type of
teammates and the sequence of their skill levels during training.

e Methodology: The approach involves creating a population of teammate agents with varying skill levels and training a novice agent (the
student) with these teammates. It uses the game "Overcooked" as the test environment and examines the impact of different teammate skill
levels and curricula on the student agent's learning and team performance.

e Innovative Approach in Cooperative Learning: The paper investigates the effects of training with teammates of different skill levels and
curricula (increasing vs. decreasing skill levels) on the student agent's learning and overall team performance. It finds that a curriculum of
teammates with decreasing skill levels often leads to better team rewards and learning outcomes for the student agent, compared to increasing

skill level curricula or training with a single pre-trained teammate.

Train with pre-trained agents To determine which teammate is a good teammate, we pair a new _ _ ) o _
student agent that learns from scratch with a pre-trained (non-learning) teammate that is sampled = IDQN = highly skilled teammate = medium skilled teammate low skilled teammate
from the population of teammates 2. We specifically use three teammates {m; ,7; ,7;, } where

t1 < tg < t3. We call the wgl as the less trained (or less skilled) agent, the wgz as the medium trained 300
agent, and the 7r;, as the highly trained agent.

Train with a curriculum of pre-trained agents In order to train with a curriculum of pre-trained = __— = 20
agents, we can make several combinations of the three pre-trained agents in B (i.e., low-skilled, 150 e
medium-skilled, and highly-skilled). We divide the training procedure of the student agent into three i /M .
equal parts of the number of episodes. For the total number of episodes is K, we pair the student /4 o
agent with a different agent for every K /3 episodes. We create two curricula of teammates: . /
0 Episode o Episode
1. Increasing curriculum: We increase the skill level of the teammates during training. ' il 5o oille sofBitee sl o iR S o i sl e iR o R 0 3l v | == =G = =0
Therefore, during the first K/3 episodes, the student agent is trained alongside the low-
skilled teammate, then for the next K /3 episodes, it is trained alongside the medium-skilled (a) student reward (b) teammate reward (¢) total reward
teammate, and for the last K/3 episodes, it is trained alongside the highly-skilled teammate.
2. %‘:cr?smg_c'{{ric“lt‘;m{ We decrease _thel Skjlll}CVCI gf the :icaftnm?‘eg d‘&“lilnt% tfl?iin]ilfllg- Figure 3: Individual and total reward for the student and teammate agents when the student (that is
erefore, similar to the increasing curriculum, the student is first paired with the highly- . . . . . e
skilled teamaate, thien the medinm-skilled teammate, and finally the lowsskilled teasamate, trained from scratch) is paired with a non-learning teammate. All means and standard deviations are
each for K/3 episodes. aggregated over 5 seeds.
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Critic-Guided Decision Transformer for Offline Reinforcement Learning [Wang+ (Shangai Univ), AAAI24]

e Objective: The study aims to address limitations of Return-Conditioned Supervised Learning (RCSL) in offline RL, particularly in stochastic
environments and stitching scenarios, by introducing the Critic-Guided Decision Transformer (CGDT).

e Methodology: CGDT combines the predictability of long-term returns from value-based methods with the trajectory modeling capability of
Decision Transformers. It integrates a learned value function (the critic) to guide policy training, ensuring alignment between target returns
and expected returns of actions.

e Advancements in Offline RL: The paper highlights CGDT's effectiveness in handling stochasticity and stitching problems, which are challenges
for traditional RCSL. CGDT's integration of a value function bridges the deterministic nature of RCSL with the probabilistic characteristics of

value-based methods, advancing state-of-the-art in offline RL and expanding RCSL's applicability in various RL tasks.

Algorithm 1: Critic-Guided Decision Transformer
e H £ t Input: Offline dataset D, critic (), policy 7, iterations M,
| | N, asymmetric critic coefficient 7., expectile regression pa-

rameter 7,,, and balance weight a.
Critic network \\| Asymmetric Critic Training
fori=1,..., M do
Sample a batch of trajectories (s;, as, ;) from D;

I | I I
| 1 | | 1 |
@ @ Compute return of sub-trajectory 7.7, By = Efﬂ T
t1 1 t t Update Q4 with gradient:
l | | | E(se,00,0) [V L(9)];

Decision transformer end for
I I I I 1 1 \\ Critic-Guided Policy Training
l | | | | | | a «0
forj=1,..,Ndo

®. O 0.6 O O ey

o o o ' ' ‘ Sample a batch of trajectories (s;, a, ;) from D;
Compute return of sub-trajectory 1.7, Ry = Ef T
Predict action a; ~ mg(-|To.t—1, St, Rt);
Predict return (g, 04) ~ Qo (+|To.4—1, St, 8¢ )3
Compute expectile regression loss: L7 ( "%—!-“—‘),
Update my with gradient:

Figure 1: Critic-Guided Decision Transformer framework.
The lower part is a vanilla Decision Transformer that takes
the states s, actions a, and target returns R as inputs to pre-
dict the next action @, for each state s,. The predicted actions
are then passed through a critic, which is a Gaussian distri-
bution with expected return mean i, and variance o; learned
from offline data. By minimizing the distance between the
expected returns of the predicted actions and the target re-

I 3

~ Tp R, —
E(St,af_,ﬁe,ﬂe) [ngcz(af:ai) +O-IFV9£'2 ( to_ ut

turns, e.g. ||[(R; — pt) /04|, the critic guides the policy to end for
take actions that are consistent with the target returns. ESIOTNITy
WANG, Yuanfu, YANG, Chao, WEN, Ying, et al. Critic-Guided Decision Transformer for Offline Reinforcement Learning. arXiv 22

preprint arXiv:2312.13716, 2023. link
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You Can’t Count on Luck: Why Decision Transformers and RvS Fail in Stochastic Environments [Paster+ (Toronto Univ.),
NeurIPS22]

e Objective: The study aims to address the shortcomings of Reinforcement Learning via Supervised Learning (RvS) approaches, like Decision
Transformers, in stochastic environments. It identifies the issue of these models failing due to their reliance on trajectory returns, which can be
influenced by luck.

e Methodology: The paper introduces ESPER (Environment-Stochasticity-Independent Representations), a method that conditions on average
cluster returns independent of environmental stochasticity. This involves using adversarial learning to cluster trajectories, ensuring that the
cluster assignments do not contain information about the stochastic outcomes of the environment.

e Innovative Solution in Stochastic RL: The key innovation lies in ESPER's approach to learning and conditioning on environment-stochasticity-
independent representations. This allows for stronger alignment between target return and expected performance in real environments,
addressing the fundamental issue identified with existing RvS approaches in stochastic settings. The paper demonstrates the effectiveness of

ESPER in several challenging stochastic offline RL tasks, showing significant improvements over traditional conditioning on returns.

Conditioned
Return E[r] Actions
r=—15 -5.0 {ap} Phass 1: . . Phase 2: . Phases:
- —25  {a} Adversarial Clustering Estimate Average Returns  Train RvS Agent
T = =0.17 {a1,a2 ! .
r=25 -5.0 %a;’} ’ L}} d e -
[r=5] [r=-15][r=1] [[==6] [=1] R = ‘ L
chistar g g k=3 B=1 =3 =1
i i ics conditioned i
Figure 1: Left: A simple gambling environment with three actions where return-conditioned algo- Ehenge ﬁsﬁﬁfﬁfﬁ AN; ﬂmriﬂiﬁg“ﬁm o m(at|sy, Re = 3)

rithms such as Decision Transformer [1] will fail, even with infinite data. The optimal action, as, will
always grant the agent 1 reward while gambling (ag and a1) give a stochastic amount of reward. The
numbers (33%) above each action represent the data collection policy. Right: The second column
represents the performance of a policy behaviorally cloned from trajectories achieving the reward in
the first column. For example, conditioned on the agent receiving r = 1, a third of trajectories take
a1 and two-thirds take a,. Averaging the returns —2.5 x 1/3 + 1 x 2/3 = —0.17. No matter how
much data the model is trained on, when conditioned on receiving a reward of 1, it will always
gamble and take o, some of the time, rather than just taking a2, which guarantees the reward.

p(ser1|5e, an, I(7))

Figure 2: ESPER learns a policy that conditions on a desired expected return. In phase 1 of the
algorithm, a function is learned using adversarial learning that assigns each trajectory in the dataset to
a cluster such that the cluster assignments do not contain information about the stochastic outcomes
of the environment that can help a dynamics model cheat to predict next states. In phase 2, the
average return in each cluster is calculated. In phase 3, an RvS agent is trained to predict the next
action given the current state and the estimated average return.
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PROGPROMPT: Generating Situated Robot Task Plans using Large Language Models [Singh+ (NVIDIA), IEEE23]

e Objective: To enhance robot task planning by leveraging the strengths of LLMs in commonsense reasoning and code understanding. The goal is
to generate executable robot task plans that are adaptable to different environments and tasks.

e Methodology: Introduces ProgPrompt, a prompting scheme that uses Pythonic program structures as prompts for LLMs. This method includes
import statements of available actions, lists of environment objects, and sample task plans as functions. The LLM generates task plans based on
these prompts, which are then executed by a robot in a simulated or physical environment.

 Innovative Approach to Task Planning: ProgPrompt represents a significant advancement in robot task planning, demonstrating that LLMs can
be effectively used to generate detailed and executable task plans. This approach combines programming language prompts with LLMs' natural
language processing capabilities, resulting in more accurate and context-aware task plans suitable for diverse robotic applications. The paper

showcases the effectiveness of this method through experiments in both virtual and physical environments, highlighting its adaptability and

potential for wide-ranging real-world applications.

PROMPT for Planning

Generated Plan PROMPT for State Feedback
o

fdef microwave salmon():

Import action primitives L Example assertion check(s f

from actions import walk =obj=, G _o: walk to kitchen You see: "fridge is CLOSED,

grab <obj>, switchen <obj>, walk{ Kitchen”) lightswitch is ON, cereal,

open <obj>, standup, find # 1: find micro B |bookshelf, box INSIDE bookshelf, Carrect Prediction

find( ‘microwave’
(# £: open mlcrowave
assert(’'close’ to 'microwave'
else: nd{ 'microwave'
BSsert| microwave' is 'closed')] |
else: closel microwave'] QJate

<obj=, putin <gbj> <obj=, ... cereal ON wallshelf, paper
INSIDE bookshelf..."

B [You have: “book"

assert('close' to 'mug' )
m | [False
assert('book' in 'hands')

pie, apple, fridge, garbagecan,
tv, dishwashingliquid, bed,

bookshelf, salmon, stove, plate, open( ‘microwave")

coffeepot, kitchentable, - True

wine: lgss paper, microwave : : assert{'cereal’ on 'bookshelf')
cnee ' ! ) # 5: put salmon in microwave Ealse

toothbrush, toothpaste,
1

bathroomcabinet, kitchen, lime, assert('salmon’ in ‘hands')

painkillers, barsoap, ...)

-

else: find('salmon')
- | else: grab('salmon')
assert{ ' close” to "microwave' )

|k Current Semantic State
ou see: "microwave is OPEN and
OFF, microwave ON

- i 1 w
assert| microwave' i5 'Opened’ )= ,':,”‘;:::?“ﬂ:g.r;m .
else: openl'microwave’) Ll L
putin('salmon', ‘microwave') Gssertl microwave' is 'opened') )

Full Execution

def throw_away_lime():
¢ find L&

# 8: find lime
find( "' lime')

# 5: close garbagecan
assert(‘close' to "garbagecan')
else: find{'garbagecan')
assert("garbagecan® is ‘opened’)
else: openl'garbagecan')

closel 'garbagecan’')

\_ # 6: Done J

Next task prompt
ldef microwave_salmon():

Fig. 2: Our PROGPROMPTS include import statement, object list, and example tasks (PROMPT for Planning). The Generated Plan is for microwave
salmon. We highlight prompt comments, actions as imported function calls with objects as arguments, and assertions with recovery steps. PROMPT
for State Feedback represents example assertion checks. We further show execution of the program. We illustrate a scenario where an assertion succeeds
or fails, and how the generated plan corrects the error before executing the next step. Full Execution of the program is shown in bottom-right.

SINGH, Ishika, BLUKIS, Valts, MOUSAVIAN, Arsalan, et al. Progprompt: Generating situated robot task plans using large language 24
models. In : 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023. p. 11523-11530. link, code


https://arxiv.org/pdf/2209.11302.pdf
https://github.com/NVlabs/progprompt-vh

Training language models to follow instructions with human feedback [Ouyang+ (OpenAl), NeurIPS22]

e Objective: The goal is to align LMs with user intentions across a wide range of tasks by fine-tuning them with human feedback. The study aims to create models that are

more helpful, honest, and harmless, aligning better with user needs and ethical guidelines.
e Methodology: The approach involves three key steps:
o Supervised Fine-Tuning (SFT): Collecting demonstration data to train a supervised policy. Labelers provide demonstrations of desired behavior on input prompts.
o Reward Modeling (RM): Collecting comparison data to train a reward model. Labelers rank model outputs, indicating preferences, and a reward model is trained to
predict human-preferred outputs.
o Reinforcement Learning via Proximal Policy Optimization (PPO): Using the output of the reward model as a reward signal, the supervised policy is fine-tuned to
optimize this reward.
e Advancements in Human-Aligned Language Modeling: This method marks a significant step in aligning LMs with human preferences. The process involves careful
collection and curation of human feedback to guide the training of LMs. The paper demonstrates that the InstructGPT models, which result from this process, show

improvements in following instructions, truthfulness, and reductions in toxic output generation, despite having fewer parameters compared to models like GPT-3. The

approach suggests that fine-tuning with human feedback is a promising direction for creating LMs that are more aligned with human intent and ethical considerations.

Step1 Step 2 Step 3

Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using
reinforcement learning.

A prompt is A prompt and
sampled from our = several model

i

Explain the maon Explain the
prampt dataset. landing to 2 & year old outputs are anding toa &
sampled.

rold

H

I
Y o ©o
A labeler e
demonstrates the @ 'G . 0
desired output preietiey P
; & e S—
behavior. 5o pecpie et ¥
e A labeler ranks
v the outputs from ( gz 'J
This data is used o best to worst. e
to fine-tune GPT-3
with supervised = 7
i )
learning.
wamwg Z This data is used o
BEE to train our 2R
reward model. W
0-0-0-0

Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers. See Section 3 for more details
on our method.

OUYANG, Long, WU, Jeffrey, JIANG, Xu, et al. Training language models to follow instructions with human feedback. Advances in
Neural Information Processing Systems, 2022, vol. 35, p. 27730-27744. link

25


https://arxiv.org/pdf/2203.02155.pdf

Direct Preference Optimization: Your Language Model is Secretly a Reward Model [Rafailov+ (Stanford+), NeurIPS23]

e Objective: To simplify the process of training LMs to align with human preferences, bypassing complex RL-based methods. It aims to directly
optimize LMs with human preferences using a new approach called Direct Preference Optimization (DPO).

e Methodology: DPO involves a new parameterization of the reward model in RLHF (Reinforcement Learning from Human Feedback), enabling
extraction of the optimal policy in closed form. This method simplifies the training process by using a binary cross-entropy loss, avoiding the
need for sampling from the LM during fine-tuning or extensive hyperparameter tuning.

« Innovative Approach in Preference Learning: The paper's central contribution is introducing a stable, efficient, and computationally
lightweight approach to align LMs with human preferences. DPO outperforms existing RLHF methods, such as PPO, in tasks like sentiment
modulation, summarization, and dialogue, while being substantially simpler to implement and train. The experiments demonstrate DPQO's

effectiveness in fine-tuning LMs to human preferences, offering a new paradigm in preference-based LM training.

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
x: “write me a poem abou x: “write me a poem about
the histor'-,rpof;azz" t l.a bEl. rewa rdS th: h|st0rvpof jazz”
N, /—\ :
: — |>|=,| —> reward model LM policy — > = — final LM
preference data maximum sample completions preferencedata _ .
Ukelhooa reinforcement learning likelihood

Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.
In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification
objective, fitting an implicit reward model whose corresponding optimal policy can be extracted in closed form.
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CLIPORT: What and Where Pathways for Robotic Manipulation [Shridhar+ (Washington Univ.), PMLR22]

e Objective: Develop an end-to-end framework, CLIPort, for language-conditioned robotic manipulation, integrating semantic understanding

and spatial precision for a variety of tabletop tasks.

e Methodology: CLIPort combines CLIP for semantic understanding (what) with the spatial precision of Transporter (where), in a two-stream

architecture. It's trained on language-conditioned manipulation tasks, ranging from packing objects to complex actions like folding cloths.

e Innovation in Robotic Manipulation: The paper's key innovation lies in its ability to ground abstract language instructions into precise physical

actions using a blend of semantic and spatial understanding. This approach enables robots to perform a wide range of tasks based on natural

language commands, showcasing data efficiency in few-shot settings and effective generalization to both seen and unseen semantic concepts.

Semantic
Ventral

Spatial

Dorsal

=== FC Downsampling & Tiling @ Multiply @ 1x1 Conv Fusion @ Add for Pick | 1x1 Conw for Place  ---» Softmax for Pick | Cross-Correlation & Softmax for Place

CLIP ResMet50 (Frozen) skip connections
1 N o
1 1 g B | 1.-':_“'
1 (I | 1 : : 1 1w =
! o HI 1 : : — - | —4 p— ... >
1 ] 1 1 ) \ 1 )
NN BN S T 7x7%2048
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isd CLIP Sentence
HxWx3 Encoder (Frozen) Affordance
HxWx1

RGB-D Transporter ResMNet (Untrained)
HxWx4

Dense Features
HxWxd

Figure 2. CLIPORT Two-Stream Architecture. An overview of the semantic and spatial streams. The semantic stream uses a frozen
CLIP ResNet50 [1] to encode RGB input, and its decoder layers are conditioned with tiled language features from the CLIP sentence encoder.
The spatial stream encodes RGB-D input, and its decoder layers are laterally fused with the semantic stream. The final output is a map
of dense pixelwise features that is used for pick or place affordance predictions. This same two-stream architecture is used in all 3 Fully-

Convolutional-Networks fpic , Pquery, and Pyey with fiick is used to predict pick actions, and ® .y and Py, are used to predict place actions.
See Appendix C for the exact architecture.
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“pick all the cherries “pack the scissors “maove the rook *fold the cloth
and put them in the box” in the brown box” one block forward”™ in half®

Figure 1. Language-Conditioned Manipulation Tasks: CLIPORT is a broad framework applicable to a wide range of language-conditioned
manipulation tasks in tabletop settings. We conduct large-scale experiments in Ravens [2] on 10 simulated tasks (a-j) with 1000s of unigue
instances per task, See Appendix A for challenges pertaining to each task, CLIPORT can even learn one multi-task model for all 10 tasks that
achieves better or comparable performance to single-task models. Similarly, we demonstrate our approach on a Franka Panda manipulator with
one multi-task model for 9 real-world tasks (k-o; only 5 shown) trained with just 179 image-action pairs.

SHRIDHAR, Mohit, MANUELLI, Lucas, et FOX, Dieter. Cliport: What and where pathways for robotic manipulation. In : Conference

on Robot Learning. PMLR, 2022. p. 894-906. link, code
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VOYAGER: An Open-Ended Embodied Agent with Large Language Models [Wang+ (NVIDIA), arxiv preprint23]

e Objective: The study aims to develop an embodied agent capable of continuous exploration, diverse skill acquisition, and making novel discoveries in Minecraft without human

intervention. VOYAGER is designed to be an LLM-powered agent that can self-improve through exploration and skill development.

« Methodology: VOYAGER integrates three key components:

o Automatic Curriculum: Maximizes exploration by suggesting new tasks based on the agent’s state and progress.

o 8kill Library: Stores and retrieves executable code representing complex behaviors, allowing for continual skill development.

o Iterative Prompting Mechanism: Uses a novel approach for self-improvement by incorporating environment feedback, execution errors, and self-verification to refine

executable programs.

 Innovation in Embodied Agents: VOYAGER represents a significant advancement in the field of Al and embodied agents. It successfully uses an LLM (GPT-4) to generate task

proposals and action plans in the form of executable code, effectively combining NLP capabilities with embodied control. This enables VOYAGER to perform a wide array of tasks

in Minecraft, demonstrating its strong in-context lifelong learning capabilities, and its ability to utilize learned skills in novel scenarios. The agent showcases significant

improvements in exploration, skill acquisition, and task execution, outperforming state-of-the-art techniques in various benchmarks within the Minecraft environment.

Automatic Curriculum Iterative Prompting Mechanism Skill Library
asyne function com hie(bot) {
A4 Equip a weapon Mine Wood Log
const sword bot. inventory. findInventoryItem(
o 1 :J'.-:{"aH_.!..:":*[ stone_sword®].id); Make Craﬂing Table
Make Crafting Table 912:;’ t.equip(sword, “hand™);} Craft Stone Sword

Make Furnace
Craft Shield
Cook Steak

Hi await cr ([T LI J—— )f Skill

Combat Task A£F Craft and equ(p a shield Retrieval
3 —— await J(BOL);  ececcessassases —

= Zombie T

}
Mine Wood Log

Env Feedback Code as
Execution Errors Actions

MINECRRE®

Yy £ 2N T

Combat Zombie

|

Refine Program

Update
Exploration
Progress

Mine Diamond

— Q Add New Skill

o — s

Environment Self-Verification

Figure 2: VOYAGER consists of three key components: an automatic curriculum for open-ended
exploration, a skill library for increasingly complex behaviors, and an iterative prompting mechanism
that uses code as action space.

Inventory {5/36): {'oak_planks'": 3, "stick':
4, ‘crafting_table 1, 'stone® 3,
‘wooden_pickaxa' 1}

Biome: river
Inventory (4/36): {'sugar_cane' 3, 'paper:
3, ‘fishing_rod": 1, ‘wooden_pickaxe®: 1}

Inventory (6/38): {'furnace" 1,
‘stone_pickaxe': 1, ‘oak_planks': 7,
‘erafting_table® 1, 'raw_iron’: 4, ‘coal: 1}

Time: night
MNearby entities: zombie
Equipment: ‘stone_swerd', "shield’

Figure 3: Tasks proposed by the automatic curriculum. We only display the partial prompt for brevity.
See Appendix, Sec. A.3 for the full prompt structure.

Reasoning: Since you have a wooden pickaxe and some stones, it would be
beneficial to upgrade your pickaxe to a stone pickaxe for better efficiency.
Task: Craft 1 stone pickaxe.

Reasoning: Since you have a fishing red in your inventory and you are near a river
biome, it would be a good opportunity to catch some fish for food and experience.
Task: Catch 1 fish.

Reasoning: You have raw iron and coal, and you have a furnace. It's time to smelt
the fren to make iron ingots, which can be used to craft better waols and armor.
Task: Smelt 4 raw iron.

Reasoning: Since it's night and there's a zombie nearby, it's a good opportunity to
try killing the zombie now that you have a stone sword and a shield equipped.
Task: Kill 1 zembie.

MNearby entities: pig, cat, villager Reasoning: Your hunger is at 0, which means you need to find food to replenish
Health: 12/20 —@—r your hunger. Since there are pigs nearby, you can kill one to obtain raw porkchops.
Hunger: /20 Task: Kill 1 pig.

Program Generated by GPT-4 Program Description Skill Library

#3 Mine Wood Log

‘ Make Crafting Table
AV Craft Wooden Pickaxe
& crat stone swora
‘ Make Fumace

Combat Cow
b Cook Steak
Value P Craft iron Axe
Combat Zombie
.0
Task: Craft Iron Pickaxe
To craft an iron pickaxe, you [+
. . . Won i Retrieve
How to craft an iron pickaxe in need to 3 iron ingots and 2 B
Minecraft? _m— sticks. Once you have gathered Query — skill Library —— .
the mater als, M
- @ raker
Environment Feedback AV Craft Wooden Rickaxe

Figure 4. Skill library. Top: Adding a new skill. Each time GPT-4 generates and verifies a new
skill, we add it to the skill library, represented by a vector database. The key is the embedding vector
of the program description (generated by GPT-3.5), while the value is the program itself. Bottom:
Skill retrieval. When faced with a new task proposed by the automatic curriculum, we first leverage
GPT-3.5 to generate a general suggestion for solving the task, which is combined with environment
feedback as the query context. Subsequently, we perform querying to identify the top-5 relevant skills.

WANG, Guanzhi, XIE, Yuqi, JIANG, Yunfan, et al. Voyager: An open-ended embodied agent with large language models. arXiv preprint 28
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SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual Policies [Fan+ (NVIDIA), PLMR21]

e Objective: The main goal is to achieve zero-shot generalization to unseen visual environments. The approach aims to improve the robustness of policy learning
against environmental variations in visual appearance while maintaining high performance.
« Methodology: SECANT employs a two-stage training process:
o Expert Policy Training: An expert policy is trained using RL with weak augmentations like random cropping. This step focuses on achieving high-
performance policies.
o Student Policy Distillation: A student network learns to mimic the expert policy but with strong augmentations (e.g., cutout-color, Gaussian noise, Mixup,
Cutmix). This helps the student develop robust visual representations, making it less sensitive to environmental variations compared to the expert.
e Zero-Shot Generalization: SECANT demonstrates significant improvements in zero-shot generalization across various domains, including DeepMind Control,
robotic manipulation, vision-based autonomous driving, and indoor object navigation. The method outperforms state-of-the-art approaches, often by wide

margins, showcasing its effectiveness in handling unseen visual environments without the need for further training or adaptation at test time.

SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual Policies Algorithm 1 SECANT: Self-Expert Cloning
1: m., mws: randomly initialized expert and student policies
Training * 2: Fuweaks Fstrong: sets of image augmentations
Environment Expert a’t 3: B: experience repla}' buffer
! 4: fortinl,..., Ty do
w . S — ol 5:  Sample experience batch 7, = (0, a¢, 0¢41,7) ~ B
eak r 1 Augment Supervise L :
; ¥ 7. Augment 0; = f(Gt);OH.l = f(OH-l)
B N 8:  Update 7 to minimize Ly, (7¢)
— | Expert. —— (¢ — Student > At 9: end for
' J J 10: Roll out 7, to collect an initial dataset D of trajectories
sradiont . i 11: fortinl, ..., Timitate dO
(1) RL trains expert (2) Student mimics expert 12:  Sample observation batch, o~D
13:  Sample strong augmentation f ~ Fgirong
Figure 2. Algorithm overview. SECANT training is split into two stages. Left, stage 1. expert policy is trained by RL with weak I e ‘||7r3(f(o)) —me(9)lr
: : A i ; : e : 15:  Roll out 7, for one environment step and add to the
augmentation (random cropping). Right, stage 2: student receives ground-truth action supervision from the expert at every time step,
conditioned on the same observation but with strong augmentations, such as cutout-color, Gaussian noise, Mixup, and Cutmix. The dataset D <= D U {0}
student learns robust visual representations invariant to environment distractions, while maintaining high policy performance. 16: end for
FAN, Linxi, WANG, Guanzhi, HUANG, De-An, et al. Secant: Self-expert cloning for zero-shot generalization of visual policies. arXiv 29
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Open X-Embodiment: Robotic Learning Datasets and RT-X Models [Padalkar+ (Google DeepMind), arxiv preprint23]

e Objective: The study aims to assess whether large-scale, diverse datasets can enable generalist robotic policies that adapt efficiently to various
robots, tasks, and environments.

e Methodology: It introduces the RT-X models, trained on data from multiple robotic platforms, and an Open X-Embodiment Dataset, assembled
from 22 different robots demonstrating 527 skills across 160,266 tasks.

« Significance in Robotic Learning: The paper demonstrates that high-capacity models trained on this dataset, termed RT-X, show positive
transfer and enhanced capabilities across multiple robotic platforms by leveraging experiences from different robots. This approach marks a

significant advancement in the field of robotics, pushing the boundaries of robotic learning towards more versatile and adaptable systems.
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PaLM-E: An Embodied Multimodal Language Model [Driess+ (Robotics at Google), arxiv preprint23]

« Objective: Develop an embodied multimodal language model, PaLM-E, that integrates continuous sensor data from embodied agents, enabling it to

perform various tasks, from robotic manipulation planning to visual question answering.

« Methodology: PaLM-E uses multimodal sentences combining text and continuous inputs like images or 3D representations. It's trained end-to-end on

tasks including robotic manipulation, visual QA, and language tasks, leveraging a large-scale dataset encompassing diverse domains.

« Innovative Approach in Embodied Al: The paper demonstrates how PaLM-E can address a variety of embodied reasoning tasks across multiple

embodiments, showing positive transfer from diverse joint training. PaLM-E's integration of vision and language with embodied reasoning represents

a significant advancement in Al, allowing for more efficient and adaptable agents in real-world applications.

Mobile Manipulation

Given <emb> Q: How
to grasp blue block?

PaLM-E: An Embodied Multimodal Language Model (ISR MO )
A: First grasp yellow
block and place it on

] &
Given <emb> ... <img> Q: How to grasp blue block? A: First, grasp yellow block
- el ? ViT
. Iv re 4
the table, then grasp

3 the blue block.
Large Language Model (PaLM)

Human: Bring me the rice chips from the
drawer. Robot: 1. Go to the drawers, 2. Open
top drawer. | see <img>. 3. Pick the green rice
chip bag from the drawer and place it on the
counter.

Tabletop Manipulation

Given <img> Task: Sort
colors into corners.
Step 1. Push the green
star to the bottomn left.
Step 2. Push the green
circle to the green star.

Control A: First, grasp yellow block and ...

Visual Q&A, Captioning ...
\

Language Only Tasks

Describe the

Given <img>. Q: What's in the Here is a Haiku about
embodied language models:
Embodied language

models are the future of

natural language

following <img>:
A dog jumping
over a hurdle at a
dog show.

image? Answer in emojis.

- J>»#0004.

Q: Miami Beach borders which ocean? A: Atlantic.
Q: What is 372 x 187 A: 6696.

Language models trained on robot sensor data can
be used to guide a robot’s actions.

Figure 1: PaLM-E is a single general-purpose multimodal language model for embodied reasoning tasks, visual-language tasks,

and language tasks. PaLM-E transfers knowledge from visual-language domains into embodied reasoning — from robot planning in
environments with complex dynamics and physical constraints, to answering questions about the observable world. PaLM-E operates on
multimodal sentences, 1.e. sequences of tokens where inputs from arbitrary modalities (e.g. images, neural 3D representations, or states, in
green and blue) are inserted alongside text tokens (in orange) as input to an LLM, trained end-to-end.

DRIESS, Danny, XIA, Fei, SAJJADI, Mehdi SM, et al. Palm-e: An embodied multimodal language model. arXiv preprint

Visually-conditioned Jokes + Few-shot prompting

| see (image omitted). Description: A cow
sitting on a rug. Joke: Why is the cow

aw, Sitting on a rug? Because it wants tobe a
B cow-ch!...lsee <img>. Description: a

¥ donkey is carrying a dog, cat, and rooster.
Joke: what do you call a donkey with a

rooster on his back. A rooster booster.

Given <img>. Q: If a
Robot Initiative robot wanted tobe
useful here, what
& steps should it take?
A: clean table..pick
up trash.. pick up
chairs.. wipe chairs..
put chairs down.

Zero-shot Multimodal Chain-of-Thought
7 -

Given <imgs>. Q: Can | go down
this street on a bicycle, yes or

B no? A: Let’s think step by step.
(2! 1. do not enter. 2. except

] bicycles. 3. do not entry except
N bicycles. 4. yes.

Given <img>. Q: How many

5 championship rings.

F Given <img>. Q: Who are the two teams playing in this

| photo, and which was the last to win a champiconship, and

which year did they win, and who was their star player that "}
- year? A: Let's think step by step. 1. team in white is new

york knnck 2. team in green is boston celtic. 3. last to win championship was

boston celtic. 4. year was 2008. 5. star player was paul pierce. . i am not

sure if this is correct. i am not basketball fan. i just google it.

arXiv:2303.03378, 2023. link

Robot Visual Perception, Dialogue, and Planning

Zero-shot: Multi-image Relationships

) T . 1 Q:Where is
championship rings did the player S <img1> in this
. on the left win in his career A: Let's 8 scene <img2s? A:
think step by step. 1. kobe bryant is LI_I a stove top
on the left. 2. kobe bryant has won | pot onit.

OCR-free Math Reasoning .., cimgs

my O:lam getting just two

| friend. How much should |
| pay intotal? A: Let's think

Robat: | am a robot operating in a kitchen. Given
<img>, what do | see? a bowl of eggs, a bowl of

flour, and a bow! of sugar.. and a spatula.. and a spoon.. and a bag of flour.. and a bag of
sugar. When a human asks me to do a task, | will respond with the sequence of actions
| would do to accomplish the task with only the items | see. Human: Use all of the
ingredients you see to make a cake batter. 1. crack egg. 2. put egg in bowl. 3. put flour
in bowl, 4. put sugar in bowl. 5. mix. 6. put in pan. 7. bake. 8. eat. 9. clean up.

Physical Prediction

-| Given <img> .
Q: What will
the robot do
next? A: fall,

ﬁﬁ: Photo 1: <img1>. Photo 2: <img2>. Q: What is in Photo 1

m‘l 2 but NOT in Photo 27 A: sunglasses.
Photo 1: <img1>. Photo 2: <img2>. Q: What is in Photo 1
but NOT in Photo 27 A: Let's think step by step and

explain. Photo 1has sunglasses on top of folded
clothes. Photo 2 does not have sunglasses on top of
folded clothes. Therefore, sunglasses are in Photo 1but
not in Photo 2.

End-to-End Egocentric Q&A, Dialogue

Given <img»> . Q: What

flavor is the doughnut

_ | . onthe right? Strawberry.. Q:
- What flavor is the doughnut

on the left? A blueberry.

Spatial Grounding

witha

Photo 1, at 10:30 am: <img1>.
Photo 2, at 12:45 pm: <img2>.
Photo 3, at 3:45 pm: <img3>.

Q: | forget, what did | have for
lunch, and what time was it? A:
Let’s think step by step.

1. you had a sandwich for lunch.
2. it was 12:45 pm.

custom pizza for me and my (S =

step by step. 1st step: 2
custom pizzas. 2nd step: 2 x
$9.99. 3rd step: $19.98.
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BridgeData V2: A Dataset for Robot Learning at Scale [(Walke+ (UC Berkeley), CoRL23]

« Objective: The aim is to facilitate robot learning research by providing a dataset supporting broad generalization to novel tasks, environments, and

institutions. It emphasizes task conditioning through goal images or natural language instructions.

« Methodology: BridgeData V2 comprises 60,096 trajectories across 24 environments with 13 skills. It's designed for multi-task learning and supports

various robot learning methods.
« Dataset Significance: The dataset's diversity enables better generalization and its compatibility with different learning methods demonstrates its

utility for scalable robot learning.
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R3M: A Universal Visual Representation for Robot Manipulation [Nair+ (Stanford Univ.), CoRL22]

e Objective: Explore the potential of pre-trained visual representations from human videos in enabling data-efficient learning for robotic

manipulation.

e Methodology: Focuses on pre-training a visual representation (R3M) using the Ego4D human video dataset with techniques like time-

contrastive learning, video-language alignment, and L1 sparsity penalty, aiming for a compact and task-relevant representation.

e Innovation in Robotic Manipulation: Demonstrates that R3M improves task success significantly compared to training from scratch or using

other state-of-the-art visual representations. R3M enables a robot to learn a range of manipulation tasks in real-world settings with minimal

demonstrations, suggesting its potential as a standard vision model for robotic manipulation.

Efficient Robot Learning

New Environment, New Tasks

Time Contrastive Learning

. B . 1
Ego4D Video + S :
> - = :
[12 ] o L&/ )
X S
5 3
i [
“stirs the “removes the d..’ &
snacks...” battery...” =

L1 Sparsity Penalty

Figure 1: Pre-Training Reusable Representations for Robot Manipulation (R3M): We pre-train a visual
representation using diverse human video datasets like Ego4D [16], and study its effectiveness for downstream
robot manipulation tasks. Our representation model, R3M, is trained using a combination of time-contrastive
learning, video-language alignment, and an L1 sparsity penalty. We find that R3M enables data efficient imitation
learning across several simulated and real-world robot manipulation tasks.
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Figure 2: EgodD [16] Video and Language (left). Sample frames and associated language from Grauman et al.
[16] used for training R3M. R3M Training (right). We train R3M with time contrastive learning, encouraging
states closer in time to be closer in embedding space and video-language alignment to encourage the embeddings
to capture semantically relevant features.
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VoxPoser: Composable 3D Value Maps for Robotic Manipulation with Language Models [Huang+ (Stanford Univ.), CoRL23]

« Objective: Develop VoxPoser, a framework that utilizes large language models (LLMs) to guide robotic manipulation tasks via language instructions.
The goal is to enhance robot interaction and task execution using natural language.

« Methodology: VoxPoser combines LLMs with 3D value map composition for task planning and execution. It employs LLMs to interpret language
instructions and generate actionable tasks. These are then translated into 3D value maps, guiding robots in physical environments.

« Innovation in Robotic Manipulation: The paper showcases VoxPoser's ability to understand and execute a wide range of manipulation tasks through
language instructions. It demonstrates how LLMs can be utilized to extract actionable knowledge for robotic manipulation without extensive task-

specific training, offering flexibility and efficiency in robotic applications.
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VIMA: General Robot Manipulation with Multimodal Prompts [Jiang+ (Stanford Univ.), ICML23]

e Objective: Develop VIMA, an agent for robotic manipulation, capable of interpreting multimodal prompts for a wide range of tasks, thus

enabling more intuitive and flexible task specification in robotics.
e Methodology: VIMA utilizes a transformer-based architecture, processing multimodal prompts (a combination of textual and visual tokens) to

generate motor actions. The system is tested on VIMA-BENCH, a new benchmark with diverse, procedurally-generated tasks for systematic

evaluation.
- Innovation in Robotic Task Specification: VIMA's key contribution is its ability to unify various robot manipulation tasks into a single framework

using multimodal prompts. This innovation simplifies task specification and allows for more generalizable, efficient, and scalable learning and
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Figure 1: Multimodal prompts for task specification. We observe that many robot manipulation tasks can be expressed as Figure 3: VIMA Architecture. We encode the multimodal prompts with a pre-trained T5 model, and condition the

robot controller on the prompt through cross-attention layers. The controller is a causal transformer decoder consisting of

multimodal prompts that interleave language and image/video frames. We introduce VIMA, an embodied agent capable of
alternating self and cross attention layers that predicts motor commands conditioned on prompts and interaction history.

processing mulitimodal prompts (left) and controlling a robot arm to solve the task (right).

JIANG, Yunfan, GUPTA, Agrim, ZHANG, Zichen, et al. Vima: General robot manipulation with multimodal prompts. arXiv, 2022.
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Language to Rewards for Robotic Skill Synthesis [Yu+ (Google DeepMind), arxiv preprint23]

« Objective: The study aims to bridge the gap between high-level language instructions and low-level robotic actions by leveraging LLMs to specify

reward functions that guide robotic behavior.

« Methodology: The approach involves a system with a Reward Translator, which interprets user input and transforms it into a reward specification.

This is combined with a real-time optimizer, MuJoCo MPC, for interactive behavior creation, allowing immediate feedback and adjustment.

« Innovation in Robotic Control: The paper's innovation lies in using LLMs for reward function generation, enabling a more flexible and intuitive

method for controlling robots. It demonstrates this method's effectiveness with various tasks on simulated quadruped and dexterous manipulator

robots and validates it on real robot hardware. The system shows a significant improvement over traditional methods, handling complex

manipulation skills and diverse locomotion tasks based on language instructions.

User User User
Make robot dog Make robot dog Make robot dog Reward Translator
stand up on two feet. stand up on two feet. stand up on two feet. (LLM)
+ + Reward code ¢
LLM LLM # Set torso rewards

set_torso_rewards(height=0.7, pitch=np.deg2rad(90))
Motion description +
The robot dog's torso is upright,
balanced over its hind feet, which
are flat and shoulder-width apart.
The front legs hang loosely, poised

# Set feet rewards
set_feet_pos_rewards('front_left, height=0.7)
set_feet_pos_rewards('back_left, height=0.0)

Low-level ac1ion*

set_joint_target(0.0, 0.2, 0.7,
00,-03,08,00, 02 07
00,-03,0.8)

l

set_feet_pos_rewards(front_right', height=0.7)

mid-air, mimicking a human's set_feet_pos_rewards(back_right, height=0.0)

relaxed arms.

Optimized
low-level actions r
<«+——————————— Motion Controller

Figure 1: LLMs have some internal knowledge about robot motions, but cannot directly translate them into actions
(left). Low-level action code can be executed on robots, but LLLMs know little about them (mid). We attempt to bridge
this gap, by proposing a system (right) consisting of the Reward Translatorthat interprets the user input and transform
it into a reward specification. The reward specification is then consumed by a Motion Controller that interactively
synthesizes a robot motion which optimizes the given reward.

User

Make robot dog stand up on two feet.
|

/~ Reward Translator Y

Motion Descriptor I <

v

[start of description]
The torso of the robot should pitch upward at 90.0 degrees.

front_left foot lifted to 0.7 meters high.
front_right foot lifted to 0.7 meters high.
[end of description]

The height of the robot’s CoM or torso center should be at 0.7 meters.

| Reward Coder If-
# Set torso rewards
set_torso_rewards(height=07, pitch=np.deg2rad(90))

# Set feet rewards
set_feet_pos_rewards(‘front_left, height=07)
set_feet_pos_rewards('back_left, height=0.0)
set_feet_pos_rewards('front_right’, height=0.7)
set_feet_pos_rewards(back_right', height=0.0)

. |

Y

Motion Controller

Figure 2: Detailed dataflow of the Reward Translator. A Motion Descriptor LLM takes the user input and describe
the user-specified motion in natural language, and a Reward Coder translates the motion into the reward parameters.

Motion Descriptor Prompt
Describe the motion of a dog robot using the following form:
* The torso of the robot should pitch upward at [NUM: 0.0] degrees.
* The height of the robot's CoM or torso center should be at [NUM: 0.3] m.

Remember:

1. If you see phrases like [NUM: default_value], replace the entire phrase
with a numerical value.

2. If you see phrases like {CHOICE: choice1, choice2, ...}, it means you
should replace the entire phrase with one of the choices listed.

Reward Coder Prompt
We have a description of a robot's motion and we want you to turn that into
the corresponding program with following functions:
sel_torso_rewards(height, pitch)
height: height target for the robot torso
pitch: pitch angle of the torso

Example answer code:
import numpy as np
set_torso_targets(0.1, np.deg2rad(5))

Remember:
1. Always format the code in code blocks

YU, Wenhao, GILEADI, Nimrod, FU, Chuyuan, et al. Language to Rewards for Robotic Skill Synthesis. arXiv preprint arXiv:2306.08647,

2023. link, code

Motion
template

Rules

Reward
API

Example

Rules
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Code as Policies: Language Model Programs for Embodied Control [Liang+ (Robotics at Google), IEEE23]

« Objective: Develop a method where robots translate natural language commands into policy code, using large language models (LLMs) trained on
code-completion.

« Methodology: Utilizes code-writing LLMs to process natural language commands and autonomously generate robot policy code. This involves
integrating classic logic structures and third-party libraries for spatial-geometric reasoning and precise control.

- Innovative Robotic Control Approach: The paper presents a unique way of leveraging LLMs for robotic manipulation and control. This approach
allows robots to interpret natural language instructions and generate policies that react to sensory inputs, showcasing the potential of LLMs in

complex, real-world robotic applications.

User

Large <«—--- Stack the blocks on the empty bowl. ®
Language

M odel AP' s . ® Put the blocks in bowls with non-matching colors ® Wait until you see an egg and put it in the green plate @ Draw a smaller pyramid a little bit to the left of the pyramid ® lﬁ: m Ei:; 'iah: ftr:l;;ths desk and put it in the middle
Control APIs w _ : '. : T 3 . .

l Policy Code |
ﬁ !.. 1 R\..g€ﬁ~

block_names = detect_objects("blocks")
@ Put the blocks in a vertical line 20 cm long and 10

bowl_names = detect_objects("bowls")
Coatsr . Put away the coke can and the apple in their
cm below the biue bowl ( ; } Put the darkest object in the plate that has the apple ( ; } Draw a square around the sweeter fruit

for bowl_name in bowl_names:
comresponding bins
-té | cv;
| .

if is_empty(bowl_name):
empty_bowl = bowl_name
.. -
@ ® - ©

break
objs_to_stack = [empty_bowl] |+ block_names

Fig. 2: Code as Policies can follow natural language instructions across diverse domains and robots: table-top manipulation (a)-(b), 2D shape drawing (c), and mobile
manipulation in a kitchen with robots from Everyday Robots (d). Our approach enables robots to perform spatial-geometric reasoning, parse object relationships, and form

stack_objects(objs_to_stack)
l def is_empty(name):
multi-step behaviors using off-the-shelf models and few-shot prompting with no additional training. See full videos and more tasks at code-as-policies.github.io

def stack_objects(obj_names):
n_objs = len(obj_names)
for i in range(n_objs - 1):
obj@ = obj_names[i + 1]
obJ1 = obJ names[i]
ick_ 2(obj@, obj1)

Fig. 1. Given examples (via few-shot prompting), robots can use code-writing
large language models (LLMs) to translate natural language commands into robot
policy code which process perception outputs, parameterize contro! primitives,
recursively generate code for undefined functions, and generalize to new tasks.

LIANG, Jacky, HUANG, Wenlong, XIA, Feli, et al. Code as policies: Language model programs for embodied control. In : 2023 IEEE 37
International Conference on Robotics and Automation (ICRA). IEEE, 2023. p. 9493-9500., link, code
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Isaac Gym: High Performance GPU-Based Physics Simulation For Robot Learning [Makoviychuk+ (NVIDIA), arxiv
preprint21]
e Objective: Develop a GPU-accelerated training platform for robotics tasks, enhancing simulation and training efficiency in robotics RL.
 Methodology: Isaac Gym uses a GPU-based physics engine and a PyTorch tensor API, allowing direct data transfer between physics simulation
and neural network policy training without CPU bottlenecks.
» Simulation and Training Performance: The platform demonstrates significant speed improvements in training complex robotics tasks on a

single GPU, surpassing traditional CPU-based simulators in efficiency and scalability. This advancement opens new possibilities for

sophisticated and efficient robotic learning systems.

Load Existing Robot Models

Learning Framework

step command, observation
action tensors tensors

Environment Logic
(Observation, reward, non-physics logic)

TN R

i
1 GPU

action, config environment Result:
tensors states Learn on 1000s of realistic robots in parallel

v —

IsaacGym Tensor API

!

PhysX

Figure 2: An illustration of the Isaac Gym pipeline. The Tensor API provides an interface to Python code to
step the PhysX backend, as well as get and set simulator states, directly on the GPU, allowing a 100-1000x
speedup in the overall RL training pipeline while providing high-fidelity simulation and the ability to interface

with existing robot models.

Figure 1: Isaac Gym allows high performance training on a variety of robotics environments. We benchmark on
8 different environments that offer a wide range of complexity and show the strengths of the simulator in blazing
fast policy training on a single GPU. Top: Ant, Humanoid, Franka-cube-stack, Ingenuity. Botfom: Shadow Hand,

ANYmal, Allegro, TriFinger.

MAKOVIYCHUK, Viktor, WAWRZYNIAK, Lukasz, GUO, Yunrong, et al. Isaac gym: High performance gpu-based physics simulation 38

for robot learning. arXiv preprint arXiv:2108.10470, 2021., link


https://arxiv.org/pdf/2108.10470.pdf

Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions with Large Language Model [Huang+ (Shanghai
Univ., ICLR24]

« Objective: Develop a system (Instruct2Act) using LLMs to translate diverse instructions into executable robotic actions, enhancing flexibility in

robotic manipulation tasks.

« Methodology: The approach integrates language and visual understanding, using LLM-generated Python programs to form a perception-action loop.

This includes using APIs to access various foundation models (like SAM and CLIP) for object identification and classification.

- Innovation in Robotic Task Execution: Instruct2Act demonstrates adaptability in handling various instruction types and inputs, translating complex,

high-level instructions into precise robotic actions. The framework is tested in different scenarios within tabletop manipulation domains, showing

significant performance improvement over existing methods, particularly in zero-shot settings.

& : Put the polka dot block into the green container.

(a) Robots are able to execute instructions that are (b) Module examples utilized in Instruct2Act. The

provided as input in natural language.

Figure 1:

File IO
@
Core
- Modules
Robotic
API

GetObsImage ( )

SaveFailureImage ( )
SAM( )
Perception CLIPRetrieval( )

Action

RobotExecution( )

the robotic system design.

GetObjMatch( )

Pixel2Loc( )
PickPlace( )
RearrangeActions( )

SpeedSet ( )

modules’ definitions are hierarchical and aligned with

A robotic task (a) is executed through the invocation of several modules (b) in
Instruct2Act.

LLM Generated Policy Generated Pali

Yy
7
)I‘ I\ Instruction

Put the green and purple polka dot block into the green container.

Put <dragged obj= . into <base ohj> . -

Put the first clicked object

into the second one

Python Interpreter
Input Image CLIPRetrieval(...)

Robaotic Executor

Pixel2Loc(...)
Low-level

-
[ /f_‘. l Controller
Coord.
Mapping

"green and purple Text
polka dot block "

PickPlace{...)

Pick Place W

Rotate Action
RobotSettingl...) b

Construction
i
i
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<dragged_ob P ter Setting:
m , NRRCRD ¢ N
2 Speed
'l' .:‘\ . . j E Cursor Click Action Space {Ié} !

Multi-Medel Instreution Retrieval

A

Figure 2: The paradigm of our proposed Instruct2Act framework. Starting with the task instruc-
tion, the framework utilizes LLM to generate executable code that invokes visual foundation models
with APIs to recognize the environment. With recognized object semantic information, we generate
plausible actions that are sent to the low-level controller to execute the task. The instructions in
green and blue stand for pure-language and multimodal instructions respectively.
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LLM+P: Empowering Large Language Models with Optimal Planning Proficiency [Liu+ (Texas Univ.), CoORR23]

« Objective: The paper's primary goal is to enable LLMs, such as GPT-4, to solve planning problems accurately by integrating them with classical

planners.

« Methodology: LLM+P involves using LLMs to transform natural language descriptions of planning problems into the Planning Domain Definition

Language (PDDL), then leveraging classical planners to find optimal solutions, which are translated back into natural language.

« Innovative Approach in Planning: This research demonstrates a significant advancement in the field of Al planning, where LLMs are used not as

standalone solvers but as translators between natural language and formal planning languages. This allows for the generation of accurate and optimal

Tidy-Up Problem PDDL Generated by LLM+P

plans, enhancing the planning capabilities of LLMs.

Module Generated Text Provided Text Clontext Ex PI% Fx 5ol

Problem (P) Problem (P)
Domain LM Domain

LILM-As-Planner LLM-As-Planner (In-context Learning)
' ~
Context Ex. P & Ex. PDDL Domain PDDL
(.
Problem (P) —» —» Plan
LLM Planner
Problem PDDL —— PDDL Plan
4 Y,

LLM + P (In-context Learning)

Fig. 1: LLM+P makes use of a large language model (LLM) to produce the PDDL description of the given problem, then
leverages a classical planner for finding an optimal plan, then translates the raw plan back to natural language using the
LLM again.

LIU, Bo, JIANG, Yuqian, ZHANG, Xiaohan, et al. Lim+ p: Empowering large language models with optimal planning proficiency. arXiv

preprint arXiv:2304.11477, 2023. link, code

-

Problem (P): You are a home robot with one
gripper. The distance between coffee table and side
table is 10. The distance between coffee table and
pantry is 20... You are at the coffee table. There is
a mustard bottle... Your goal is to move objects to
their destinations...

Problem PDDL generated by LLM+P:
(:objects coffee-table side-table
recycle-bin pantry - location

mustard-bottle soup-can - obiject)
(:init (= (total-cost) 0) (=
(distance coffee-table side-table)
10) (= (distance coffee-table
pantry) 20) ... (robot-at
coffee-table) (at mustard-bottle
coffee-table) (at soup-can

side-table) (hand-empty) )

(:goal (and (at mustard-bottle
pantry) (at soup-can recycle-bin)))
(:metric minimize (total—-cost)) )

v
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Task and Motion Planning with Large Language Models for Object Rearrangement [Ding+ (Bighamton Univ.), IROS23]

« Objective: The research focuses on enhancing robot planning methods with common sense for object rearrangement, using LLMS to generate
symbolic spatial relationships between objects, and grounding them in different geometric spatial relationships for task and motion planning.

« Methodology: LLM-GROP first uses an LLM to determine symbolic spatial relationships between objects (e.g., a fork and a knife being on the left and
right, respectively). These relationships are then grounded into geometric spatial relationships, evaluated for feasibility by a motion planning system.

« Innovation in Robotic Task Planning: The study showcases LLM-GROP's ability to transform natural language commands into human-aligned object
rearrangement in various environments. It demonstrates improvements in user satisfaction and maintains comparable cumulative action costs,

showing LLM-GROP's practicality in real-world scenarios with a mobile manipulator.

Seat To Be SW ? Computed object configurations | H Service Request
| ] Jrom LLM = __ (E.g., set dinner table
3 e T T with ‘plate’ and ‘fork’) Task Planner
, - ey ' -[ Goal Specification ]
~ p : Symbolic Spatial
< Relationships [ Utility Function J _— — E— Ee———
Generator o ‘,,__'." | '__.'_' \ '.,__'-" . '_-" \
coon Trajectory - ﬂ [— o, 4k ek - & o b
P Sequence = ) = e L * - i
Fork is on the . o e il - (- \ N -
left of bread plate i Task-motion - ‘ﬂ' S
o Motion Planner plan ¢ 1.6 (; k) 2. Goto(table) 3. Goto(knife) 4. Golo(table)
. " . = . Goto(fork), . Goto(table), . Goto(knife), . Goto(table),
is (-0.1, 0.0) Navigation ‘ Task: Set the table using ] Pickup(fork) Place(fork, table) Pickup(knife) Place(knife, table)
Geometﬂc Spaﬁal & Manipulaﬁon bread plate, fork, knife, bread
Relationships Generator ( . . '-""_. !
j j % T ——— | Object Attributes ] o \
I - |': Fork4s width a =37 e
| ,.-‘ Ui : - ' is 4 cm”
- ' =y ' ELM TAMP
B B i ]
[ ' 6. Gota(table), 8. Goto(table),
_ " ! . . . 5 Gobobroad PBOL  pioiotrec pate, OO agarens
Fig. 2: LLM-GROP takes service requests from humans for setting tables table) bread_plate)
and prod‘uces a task-motion plan that the robot can execute. LLM-GROP Fig. 3: An illustrative example of LLM-GROP showing the robot navigation trajectories (dashed lines) as applied to the task of “set the table with a bread
Fig. 1: A mobile manipulator is assigned the task of setting a table in a . . ) plate, a fork, a knife, and a bread”” LLM-GROP is able to adapt to complex environments, using commonsense extracted from GPT-3 to generate efficient
dining domain. The manipulator needs to arrange several tableware objects, 1S CDmanEd of two k'ey Compﬂﬂents: the LLM and the Task and Motion (i.e., minimize the overall navigation cost) and feasible (i.e., select an available side of the table to unload) pick-and-place motion plans for the robot.
including a knife, a fork, a plate, a cup mat, and a mug. These objects are Planner. The LLM is responsible for creating both symbolic and geometric
available on the other tables, and there are also randomly generated obstacles . ) . i K . A
(ie., the red chair) that are not included in the pre-built map beforehand. spatial relationships between the tableware objects. This provides the
The robot needs to compute feasible and efficient plans for rearranging the .
objects on the target table using both navigation and manipulation behaviors. hecassaly context for the robot to under.stand how the Ob-JECtS Sl'lOlll(El be
arranged on the table. The Task and Motion Planner generates the optimal
plan for the robot to execute based on the information provided by the LLM.
DING, Yan, ZHANG, Xiaohan, PAXTON, Chris, et al. Task and motion planning with large language models for object rearrangement. 41
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Reflexion: Language Agents with Verbal Reinforcement Learning [Shinn+ (Northeastern Univ.), NeurIPS23]

« Objective: Develop a method for reinforcing language agents using verbal feedback instead of traditional weight updates. Reflexion focuses on

improving decision-making in agents through reflective text stored in episodic memory.

« Methodology: Reflexion agents verbally reflect on task feedback, maintaining a reflective text in an episodic memory buffer. This method aims to

enhance decision-making in subsequent trials by incorporating different types of feedback (scalar values or free-form language).

« Key Innovation: Reflexion represents a shift from conventional reinforcement learning, using linguistic feedback to direct agents towards improved

performance. It has shown significant improvements across diverse tasks, including sequential decision-making, coding, and language reasoning,

achieving notable accuracy in benchmarks like the HumanEval coding task.

(a) Task

l

(b)
Trajectory

(c)

Evaluation

_______J 1. Decision making_J

You are in the middle of a room
[...] Task: clean some pan and put
it in countertop.

[ 2. Programming l
Task: You are given a list of two
strings [...] of open '(' or close
'} ' parentheses only [...]

| 3. Reasoning L_______

Task: What profession does John
Lanchester and Alan Dean Foster
have in common?

[...]

Action:take panl from stoveburnerl
Obs:Nothing happens. [...]
Action:clean panl with sinkbasinl
Obs:Nothing happens. [...]

def match parens(lst):

if sl.count (" (') +
s2.count (' (') == sl.count(')') +
sZ2.counbE("¥" ¥z [+..]

return 'No'

Think: [...] novelist, journalist,
critic [...] novelist,
screenwriter [...] common is

novelist and screenwriter.
Action: “novelist, screenwriter”

Rule/LM Heuristic:
Hallucination.

Self-generated unit tests fail:
assert match_parens(...)

Environment Binary Reward:
0

(internal / external)

(d)
Reflection

[...] tried to pick up the pan in
stoveburner 1 [...] but the pan
was not in stoveburner 1. [...]

[...] wrong because it only checks
if the tetal count of open and
close parentheses is equal [...]
order of the parentheses [...]

l

(e) Next
Trajectory

P[...] failed because I incorrectly ]
assumed that they both had the
same multiple professions [...]
accurately identifying their
_professions.

[...] Action: take pan 1 from
stoveburner 2

[...] Obs: You put the pan 1 in
countertop 1.

[...]
return 'Yes' if check(Sl) or
check(S52) else 'No'

Think: [...] So the profession
John Lanchester and Alan Dean
Foster have in common is novelist.
Action: “novelist”

Figure 1: Reflexion works on decision-making 4.1, programming @, and reasoning E tasks.

SHINN, Noah, CASSANO, Federico, GOPINATH, Ashwin, et al.Reflexion: Language agents with verbal reinforcement learning. In :
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(long-term memory)
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Algorithm 1 Reinforcement via self-reflection

Initialize Actor, Evaluator, Self-Reflection:

fhf&, j»fé, fhfér

Initialize policy 7g(a;|s;), 6 = {M,, mem}

Generate initial trajectory using g

Evaluate 7 using M,

Generate initial self-reflection srg using Mg,

Set mem  [srg]

Sett =0

while M, not pass or ¢ < max trials do
Generate 7; = [ag, 00, - - . a;, 0;| using mg
Evaluate 7; using M,
Generate self-reflection sr; using M,
Append sr; to mem
Increment ¢

end while

return

Figure 2: (a) Diagram of Reflexion. (b) Reflexion reinforcement algorithm
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